Размер шрифта
-
+

Диверсификация инвестиционного портфеля. Теория Марковица-Шарпа - стр. 5

1.2.1. Количественные показатели

Доходностью в теории Марковица считается возврат на инвестицию:

Допустим, инвестор купил актив стоимостью P>m-1, а вернул себе (например, продал этот актив) стоимость P>m. Значит, инвестор заработал разницу P>m – P>m-1. Эту разницу надо разделить на сумму вложений, то есть на стоимость актива P>m-1, по которой он приобрел этот актив. Эта формула и выражает определение понятия доходности инвестиции (возврата на инвестицию).



Получается, что доходность, это безразмерная величина, которая выражается в виде десятичной дроби. Но часто для удобства доходности выражают в процентах. Для этого безразмерную доходность умножают на 100 % и получают процентную доходность. Например, доходность 0.2, это то же самое, что и доходность 20 %, а доходность 2.3, это доходность 230 %. В этой книге, в основном, используется безразмерная доходность.

Рассмотрим пример. Пусть инвестор положил в банк 1000 рублей на 10 лет под 10 % годовых с ежегодной капитализацией дохода. На рис. 1 показано, как в течение 10 лет меняется величина его вклада по схеме сложных процентов. А на рис. 2 показано, какая была каждый год доходность банковского вклада.


Рис. 1. Рост вложения 1000 руб. на банковском вкладе за 10 лет по схеме сложных процентов.


Рис. 2. Поведение годовой доходности вложения 1000 руб. на банковском вкладе за 10 лет по схеме сложных процентов.


Рассмотрим случай, когда инвестор положил в банк 1000 рублей на 10 лет под 12 % годовых, но с начислением простых процентов на сумму вклада. На рис. 3 показано, как в течение 10 лет меняется величина его вклада по схеме простых процентов. А на рис. 4 показано, какая была каждый год доходность его банковского вклада.


Рис. 3. Рост вложения 1000 руб. на банковском вкладе за 10 лет по схеме простых процентов.


Рис. 4. Поведение годовой доходности вложения 1000 руб. на банковском вкладе за 10 лет по схеме простых процентов.


Пусть на каком-то интервале ежедневные цены закрытия какого-то биржевого актива в торговые дни представляют собой следующий временной ряд из M+1 цен закрытия:



Представим себе ситуацию так, что инвестор каждый раз покупает этот актив по цене закрытия текущего дня, а на следующий день продает его по цене закрытия следующего дня, и тут же снова покупает этот актив по цене закрытия этого следующего дня, чтобы послезавтра снова повторить все эти операции. Если не учитывать всякие расходы на комиссии брокера, то это в точности эквивалентно тому, как если бы инвестор купил бы этот актив по цене P>0 и держал бы его все эти

Страница 5