Размер шрифта
-
+

Big data простым языком - стр. 18

Каким образом сместить фокус с данных на другие аспекты, не потеряв важность работы с данными?

Ключевыми здесь всегда будут стратегия или видение того, что организация планирует делать. Так, в своем выступлении Адам Моссери, рассказал об оптимизации пользовательской функции по загрузке фотографии в Facebook. Его команда провела ряд экспериментов по оптимизации процесса загрузки, руководствуясь при выборе того или иного интерфейса для пользователя только данными, начиная с кнопки и заканчивая изменениями во встроенных плагинах по поддержке браузера и навигатора для выбора файлов. Каждый из экспериментов оказался провальным, то есть не привел к увеличению конверсии активных пользователей сервисом загрузки фотографий.

В конечном счете, Моссери решил сменить тактику. Он оттолкнулся от данных, как стартовой точки анализа состояния воронки, и этапов, на которых пользователи по какой-то причине покидают Facebook. Затем он переработал подход, поставив во главу стола удобство пользователей и простоту.

Это дало определенные результаты, существенно увеличив конверсию пользователей. Конечное решение, выбранное его командой, не могло быть измерено только данными.

Data-informed или data-driven

При сравнении подходов ненамеренно вспоминается конфликт Стива Балмера (СЕО Mircosoft 2000-2014) с Linux Foundation, которую он однажды назвал «раковой опухолью, приклеившейся к настоящей интеллектуальной собственности». В отличие от Microsoft, разработчик в Linux Foundation делает всего один патч для платформы за весь свой цикл работы на ней.

Данный конфликт очертил рамки нескольких типов организаций. По разные стороны виртуальных баррикад оказались разные подходы, в том числе и к управлению данными и инновациями.

Традиционный подход дата-центрированной организации опирался на правило Парето, которое гласит: двадцать процентов усилий приносят восемьдесят процентов результата. Высокопроизводительные силы сконцентрированы в дата-центрированных корпорациях, где есть нормативы, KPI, и где установка тех или иных требований к данным прямо влияет на получаемый результат или выполнение какого-либо норматива.

В дата-центрированных организациях основной упор в дизайне потребительских продуктов и сервисов строиться, прежде всего, на проверке гипотезы, где конечный потребитель (пользователь) голосует за наиболее приемлемый для него продукт, услугу или интерфейс.

Другой тип организации, наоборот, не имеет явных KPI или рычагов управления. Это так называемые организации открытого, платформенного типа. К ним можно отнести одно из ключевых утверждений, что датацентрированные процессы не работают. С одной стороны, это пространство с неизвестными малоизученными переменными, где данные не могут однозначно повлиять на продукт, с другой, – этот тип организаций имеет одну отличительную черту, благодаря которой потребитель сам может стать создателем нового продукта или услуги. В таком случае сопутствующие аналитические сервисы, основанные на данных, позволяют потребителю самому создать для себя продукт который ему нравится.

Страница 18