Размер шрифта
-
+

Big data простым языком - стр. 17

В чем ценность data-driven организации

В 2011 году профессор MIT Эрик Брайнджолсфон провел любопытное исследование.[14] Он проанализировал данные 330 различных компаний за пятилетний цикл, в рамках которого выявил взаимосвязь между производительностью труда, выручкой и культурой организации, где было видно, как data-driven культура влияла на результативности той или иной компании.

Согласно исследованию, DD процесс повышал результативность труда и выручку компании на шесть процентов. По данным исследовательской компании Nucleous Research за 2014 год, было выявлено, что за каждый вложенный доллар в решения и процессы по аналитике и работе с данными, компания получала в среднем 13,01 долларов.

Data-informed организации

Продолжаем главы для продвинутых. Пытаясь разобрать дальнейший текст, я прошу, не сильно налегайте на алкоголь. Мне очень хочется, чтобы вы это прочитали.

Итак, существование так называемых дата-центрированных организаций имеет свое обоснование. Понятно, каким образом их строить и зачем. Но есть ли здесь какой-то подвох?

В 2010 году Адам Моссери, VP по продукту новостной ленты в Facebook, высказал мысль о том, как важно не допускать полной централизации организации в отношении данных. Основная идея его выступления сводилась заключалась в том, что данные дают возможность проанализировать текущую ситуацию и выбрать и наиболее оптимальный путь.

Но, если говорить о возможности создания уникального или лучшего продукта, то в дополнение к подходу, сформулированному Адамом Моссери, известный блогер и писатель в области Digital, Эндрю Чен, сформулировал тезис наличия «» в дата-центрированном процессе или продукте. Что это означает?


http://andrewchen.co/know-the-difference-between-data-informed-and-versus-data-driven/


Локальный максимум представляет точку, которую можно легко выявить с помощью данных, и она помогает инкрементально (небольшими шагами) оптимизировать выбранный процесс или продукт. Но данная точка никак не связана с лучшей конфигурацией продукта или процесса, которая даст максимальный результат. Иными словами, при выявлении локального максимума всегда существует другая точка, которая является по совместительству экстремумом или наиболее лучшей конфигурацией продукта, но она отсутствует в наблюдении, так как данных для ее выявления обычно недостаточно.

Таким образом, путь развития организации как чисто дата-центрированной, перешел к новой модели работы с данными – data-informed.

Данная модель предполагает, что данные используются при принятии решений, но не являются ключевым фактором, так как поиск лучшего продукта является цепочкой экспериментов, которые заранее предсказать невозможно.

Страница 17