Размер шрифта
-
+

Бесконечная сила. Как математический анализ раскрывает тайны вселенной - стр. 5


Непостижимо эффективно

Тот факт, что анализ может так хорошо моделировать природу, даже несколько пугает, учитывая, насколько различны эти две сферы. Анализ – воображаемое царство символов и логики; природа – реальное царство сил и явлений. Но каким-то образом, если переводить реальность в символы достаточно искусно, с помощью логики анализа можно использовать одну истину реального мира для порождения другой. Истина на входе, истина на выходе[14]. Начните с чего-то эмпирически истинного и выраженого в символах (как Максвелл с законами электричества и магнетизма), примените верные логические действия, и получится другая эмпирическая истина, возможно, новая – какой-то ранее неизвестный факт о Вселенной (подобно существованию электромагнитных волн). Таким образом анализ позволяет нам заглядывать в будущее и предсказывать неизвестное. Именно это делает его столь мощным инструментом для науки и технологий.

Но почему же Вселенная должна уважать хоть какую-нибудь логику, не говоря уже о той, которую можем использовать мы, ничтожные люди? Именно этому удивлялся Эйнштейн, когда писал: «Вечная тайна мира заключается в его постижимости»[15]. Именно это имел в виду американский физик Юджин Вигнер в своем эссе «Непостижимая эффективность математики в естественных науках»[16], когда писал: «Математический язык удивительно хорошо приспособлен для формулировки физических законов, это чудесный дар, который мы не понимаем и которого не заслуживаем»[17].

Это чувство благоговения восходит к истории математики. По легенде, Пифагор[18] ощутил его примерно в 550 году до нашей эры, когда вместе с учениками обнаружил, что музыка регулируется отношениями целых чисел. Например, представьте, что вы защипнули гитарную струну. Когда струна вибрирует, она издает определенную ноту. Поставьте палец левой руки точно на половине длины струны и снова защипните ее. Теперь колеблющаяся часть струны вдвое короче (отношение 1 к 2), и струна звучит ровно на октаву выше, чем исходная нота (это расстояние от одной ноты «до» до следующей «до» в интервале до-ре-ми-фа-соль-ля-си-до). Если сократить струну на 2/3 исходной длины, то она будет звучать на квинту выше (интервал от «до» до «соль»; вспомните первые две ноты из темы «Звездных войн»). Если же вибрирующая часть составляет 3/4 исходной длины, то звук выше на кварту (интервал между первыми двумя нотами свадебного марша «Вот идет невеста»[19]). Древнегреческие музыканты знали о таких музыкальных интервалах, как октава, кварта и квинта, и считали их красивыми. Столь неожиданная связь между музыкой (гармонией реального мира) и числами (гармонией воображаемого мира) привела пифагорейцев

Страница 5