Жизнь на скорости света. От двойной спирали к рождению цифровой биологии - стр. 34
Некоторые белковые машины приспособлены для исправления ошибок при синтезе и сборке белков. Протеасомы отвечают за ликвидацию ненормальных белков путем протеолиза – реакции разрывания белковых связей, выполняемой ферментами протеиназами. Эта машина представляет собой цилиндрический комплекс, средняя часть которого состоит из четырех колец, подобно стопке бубликов, каждый бублик сделан из семи белковых молекул. Предназначенные для ликвидации в протеасоме белки-мишени помечаются молекулами убиквитина – маленького белка, присутствующего по всей клетке. Примерно тридцать лет назад этот базовый механизм избавления клетки от отходов был выявлен тремя учеными: Аароном Чехановером, Аврамом Хершко и Ирвином А. Роузом; в 2004 году они получили за это Нобелевскую премию.
Продолжительность жизни каждого белкового робота в клетке генетически запрограммирована. Действие этой программы слегка отличается в разных ветвях жизни. Например, и E. coli, и дрожжевые клетки содержат фермент бета-галактозидазу, которая помогает расщеплять сложные сахара; однако период полураспада этого фермента сильно зависит от аминокислоты на конце белка (N-концевой аминокислоты). Когда на N-конце бета-галактозидазы стоит аргинин, лизин или триптофан, время полураспада белка составляет 120 секунд у E. coli и 180 секунд у дрожжей. Если на том же месте стоит серин, валин или метионин, время полураспада значительно возрастает – более 10 часов у E. coli и более 30 часов у дрожжей. Это называется N-концевым правилом{72} пути деградации белка.
Нестабильность и недолговечность белков показывают, что и жизнь самих клеток была бы очень короткой, если бы клетки были просто мембранными мешочками – пузырьками – с белками, но без генетического материала. Все клетки умрут, если не смогут постоянно делать новые белки для замещения тех, что повреждены или неправильно сложены. Бактериальная клетка должна заново сделать все свои белки или умереть в течение часа или даже меньше. Это верно и для клеточных структур, таких как мембрана: круговорот фосфолипидных молекул и мембранных транспортеров таков, что, если они не будут постоянно пополняться новыми, мембрана лопнет и все содержимое клетки вытечет. При культивировании клеток в лаборатории применяют простой тест на жизнеспособность: определить, протекает ли их мембрана настолько, чтобы пропустить внутрь крупные частицы красителя. Если они могут проникнуть в клетки, те явно мертвы.
Другая белковая машинерия разлагает и разрушает старые или отказывающие клетки в многоклеточных организмах. Эта программируемая клеточная смерть – апоптоз – критически важная составляющая жизни и развития. Конечно, разборка чего-то настолько сложного, как клетка, требует чрезвычайно точной координации. Чтобы начать разрушение, апоптосома, белковый комплекс, прозванный «машина смерти о семи спицах», использует каскад каспаз – особой разновидности протеаз, т. е. ферментов, переваривающих белок. Эти каспазы ответственны за разборку главных клеточных белков, таких как белки цитоскелета, что приводит к характерным изменениям формы клеток, подвергающихся апоптозу. Другой признак апоптоза – это фрагментация ДНК. Каспазы играют важную роль в этом процессе, активируя фермент, расщепляющий ДНК, – ДНКазу. Кроме того, они ингибируют ферменты, ремонтирующие ДНК, разрушая структурные белки в ядре клетки.