Жизнь на грани. Ваша первая книга о квантовой биологии - стр. 11
Итак, если бы частицы не умели танцевать джайв и вальс, наша Вселенная так и осталась бы бульоном из газообразного водорода и ничем более. Не было бы сияющих звезд, не сформировались бы никакие другие химические элементы, и вы сейчас не читали бы эти строки. Мы существуем благодаря способности протонов и нейтронов к такому парадоксальному квантовому поведению.
Последний пример снова возвращает нас в мир технологий. Знание законов квантового мира можно использовать не только для того, чтобы разглядеть крошечные объекты вроде вирусов, но и для того, чтобы заглянуть внутрь самих себя. Магнитно-резонансная томография (МРТ) – метод исследования мягких тканей, позволяющий получать поразительно четкие изображения. МРТ-сканирование регулярно используется для подтверждения диагнозов и для обнаружения опухолей внутренних органов. В нетехнических описаниях МРТ, как правило, не упоминается тот факт, что этот метод основан на таинственных законах, действующих в квантовом мире. В МР-томографе используются мощнейшие магниты, способные изменять магнитный момент (спин) протона в ядре атомов водорода, находящихся в организме человека. Затем на ядра, протоны которых поменяли параметры спинов, воздействуют радиочастотным импульсом, что приводит к тому самому странному квантовому состоянию, когда частицы внутри ядра существуют одновременно в двух противоположных фазах. Бесполезно пытаться представить себе, как это выглядит, поскольку это невообразимо отличается от нашего повседневного опыта! Важно то, что, когда атомные ядра возвращаются в исходное положение (положение, в котором они пребывали до состояния квантовой суперпозиции, обусловленного воздействием магнитного поля), выделяется энергия, которую регистрирует электронная система сбора данных МР-томографа. Именно благодаря этой энергии мы получаем невероятно точные изображения внутренних органов пациента.
Если вы когда-нибудь окажетесь внутри МР-томографа, слушая приятную музыку через наушники, подумайте о парадоксальном квантовом поведении частиц, благодаря которому работает это удивительное диагностическое устройство.
Квантовая биология
Так какое же отношение имеет вся эта квантовая таинственность к долгому перелету малиновки через всю Европу и ее способности легко ориентироваться в пространстве и запоминать путь? Напомню, что в начале 1970-х годов супруги-ученые Вильчко установили: механизм магниторецепции у малиновки напоминает принцип работы иклинометра. В то время это открытие оставалось удивительной загадкой, ведь никто из ученых не мог предположить, каким образом может работать биологический компас отклонения. Однако приблизительно в те же годы немецкий ученый Клаус Шультен заинтересовался тем, как происходит перемещение электронов в химических реакциях, в которых участвуют свободные радикалы. Свободными радикалами называются молекулы, имеющие неспаренные электроны во внешней электронной оболочке (большинство электронов в молекулах спарены на атомных орбиталях). Об этом важно помнить, рассуждая о таинственном квантовом свойстве спина, ведь спаренные электроны обычно имеют различные (противоположные) спины и их суммарный спин равен нулю. Однако, не имея электрона-близнеца, обнуляющего момент импульса, неспаренные электроны в свободных радикалах имеют спин, наделяющий их свойством парамагнетизма: их спин может изменяться под воздействием магнитного поля.