Размер шрифта
-
+

Живая этика и наука. Материалы Международной научно-общественной конференции. 2007 - стр. 102

Р.Е.Ровинский,

доктор технических наук, профессор, Израиль

Элементы космического мышления в современной физической науке

Тема нашей конференции – Живая Этика и наука – не может оставить без внимания то обстоятельство, что серия важнейших научных открытий второй половины ХХ века в физической науке меняет ранее сложившиеся мировоззренческие представления об устройстве и функционировании нашего Мира. Тем самым подтверждается одно из основных положений Живой Этики о науке как предтече нового мировоззрения.

Ограничусь обсуждением новых мировоззренческих представлений космологии, создающих предреволюционную ситуацию в физической науке. На уровне сегодняшнего научного знания такая ситуация рождает проблемы, решение которых переходит в ведение физической науки XXI века. Потребуются не только новые знания, но и новые методики, потребуется новое научное мышление, и космическое мышление начинает осознаваться научным сообществом как вполне реальная форма научного мышления. Суть космического мышления, его значение для дальнейшей судьбы человечества подробно рассматриваются в установочной статье Л.В.Шапошниковой, опубликованной в материалах Объединенного Научного Центра проблем космического мышления [1], и в докладе на этой конференции [2]. Что касается физической науки сегодняшнего дня, то в ней явственно проглядываются элементы такого мышления, в чем нетрудно удостовериться.

Два важнейших астрономических открытия конца прошлого века положили начало кардинальному изменению прежних научных представлений о Вселенной. Первое открытие имеет определенную предысторию. В начале XIX века философ-диалектик Гегель объявил общепризнанную теорию всемирного тяготения Ньютона ошибочной, поскольку в Природе, согласно представлениям диалектики, существуют противоположности: гравитационному притяжению должно противостоять гравитационное отталкивание. В рамках принятой в те годы модели стационарной Вселенной присутствие только сил притяжения неизбежно привело бы все вещество к стягиванию «в точку». Однако теория тяготения Ньютона родилась на экспериментальной основе, а Гегель опирался только на свои мировоззренческие представления. В те, да и в последующие годы никому не доводилось наблюдать отталкивание тел без их прямого контакта, и возражения Гегеля были оставлены без внимания.

Но в 1917 году Альберт Эйнштейн вплотную сталкивается с этой проблемой при попытке создать на базе общей теории относительности (ОТО) математическое описание состояний стационарной Вселенной. Присутствие в мире только сил гравитационного притяжения создавало нерешаемую проблему совмещения стационарности с однополярностью таких сил. Эйнштейн был вынужден ввести допущение (кстати, вытекающее из ОТО) о присутствии гравитационных сил отталкивания, действие которых распространяется на всю Вселенную в целом, уравновешивая силы притяжения. Но в каждом локальном участке Вселенной силы отталкивания оказывались несоизмеримо меньше сил притяжения. Сила гравитационного отталкивания, в отличие от силы гравитационного притяжения, растет пропорционально расстоянию до удаленного объекта. Поэтому лишь на периферии Вселенной сила отталкивания начинает заметно выделяться на фоне сил притяжения. Теоретики объявили источником гравитационного отталкивания физический вакуум, присвоив ему название анти-гравитирующего вакуума.

Страница 102