Взрыв - стр. 2
Итак, пока внутри звездного ядра шесть протонов образуют в течение долгого срока ядро гелия и два свободных протона, на волю попадут три заряженных мощной энергией фотона.
Три искорки света вспыхнут на значительном расстоянии и в разных временных интервалах среди триллионов прочих столкновений, не испускающих зарядов энергии, подобных сакраментальному «пим!». Эти искорки затеряются в толще настолько густой и темной материи, что сами атомы растеряют там электронные облака и поплывут подобно кинетической плазме. Разве вы не знаете, что ядро желтой звезды G-класса темнее, чем самая темная точка пространства?
Темнее, но не холоднее. На своем пути три энергетических фотона добавят свое тепло к жару звезды, отталкиваясь от протонов и легких ядер гелия.
У хаотично движущихся фотонов нет определенного направления движения. Каждый фотон ударяется и отскакивает от больших частиц, или, говоря научным языком, поглощается и мгновенно испускается подобно сумасшедшему танцору, рвущемуся к двери. Ввиду отсутствия цели ни один из них не может выскользнуть из вихря частиц и отойти в сторонку. Каждый фотон проходит путь величиной в долю сантиметра (еще один термин, применимый только к Земле) до столкновения с новой частицей и отскока в другом направлении.
Хотя основная масса фотонов не помышляет покинуть ядро звезды и направиться в верхние слои, малая часть из них именно так и поступает, являясь представителями «исходящей» энергии, то есть объема теплоты, превышающего уровень, необходимый для поддержания давления и удерживания звездного ядра от коллапса под грузом гравитации верхних слоев. Эти несколько вырвавшихся фотонов покидают мельтешащий хоровод и устремляются к поверхности звезды.
Попав в густые темные слои звездной материи над ядром, каждый фотон продолжает игру лицедейства и перевоплощения, делая шаг вперед и два назад. По мере проникновения в более холодные слои фотон теряет часть своей энергии, и частота вибраций в среднем становится меньше, а длина волны – больше. Некоторые фотоны, хотя, конечно, не все, могут сохранять свой потенциал достаточно долго. В целом гамма-лучи ядра звезды превращаются в средних слоях в рентгеновские, затем в ультрафиолетовые и становятся на поверхности видимым светом, говоря земным языком.
В двух третях пути до звездной поверхности звездные газы охлаждаются с пятнадцати миллионов градусов до двух. Эти холодные газы становятся практически светонепроницаемыми, поэтому расстояние, проходимое фотоном за время его превращений, становится для нас несущественным. В то же время в данной области разнос температур между глубинными и поверхностными слоями значительно увеличивается, да и более холодные газы в этой сфере менее густы, а значит, и менее стабильны. Таким образом, горячая материя из звездных недр поднимается ввысь подобно пузырькам на поверхности кипящей воды. Этот процесс называется конвекцией и суть его в том, что более холодная и сравнительно менее густая материя в поверхностном слое звезды оседает вниз, в нескончаемое бурление.