Размер шрифта
-
+

Вселенная, жизнь, разум - стр. 40

На рис. 8 схематически приведена сводная диаграмма «цвет – светимость» для 11 скоплений, из которых два (М3 и М92) шаровые. Ясно видно, как «загибаются» вправо и вверх главные последовательности у разных скоплений в полном согласии с теоретическими представлениями, о которых уже шла речь. Из рис. 8 можно сразу определить, какие скопления являются молодыми и какие старыми. Например, «двойное» скопление % и h Персея молодое. Оно «сохранило» значительную часть главной последовательности. Скопление М41 старше, еще старше скопление Гиады и совсем старым является скопление М67, диаграмма «цвет – светимость» для которого очень похожа на аналогичную диаграмму для шаровых скоплений М3 и М92. Только ветвь гигантов у шаровых скоплений находится выше в согласии с различиями в химическом составе, о которых говорилось раньше.


Рис. 8. сводная диаграмма Герцшпрунга-Рассела для 11 звездных скоплений


Таким образом, данные наблюдений полностью подтверждают и обосновывают выводы теории. Казалось бы, трудно ожидать наблюдательной проверки теории процессов в звездных недрах, которые закрыты от нас огромной толщей звездного вещества. И все же теория и здесь постоянно контролируется практикой астрономических наблюдений. Нужно отметить, что составление большого количества диаграмм «цвет – светимость» потребовало огромного труда астрономов-наблюдателей и коренного усовершенствования методов наблюдений. С другой стороны, успехи теории внутреннего строения и эволюции звезд были бы невозможны без современной вычислительной техники, основанной на применении быстродействующих ЭВМ. Неоценимую услугу теории оказали также исследования в области ядерной физики, позволившие получить количественные характеристики тех ядерных реакций, которые протекают в звездных недрах.

Без преувеличения можно сказать, что разработка теории строения и эволюции звезд является одним из крупнейших достижений астрономии второй половины XX столетия.

Развитие современной физики открывает возможность прямой наблюдательной проверки теории внутреннего строения звезд, и в частности Солнца. Речь идет о возможности обнаружения мощного потока нейтрино, который должно испускать Солнце, если в его недрах имеют место ядерные реакции. Хорошо известно, что нейтрино чрезвычайно слабо взаимодействует с другими элементарными частицами. Так, например, нейтрино может почти без поглощения пролететь через всю толщу Солнца, в то время как рентгеновское излучение может пройти без поглощения только через несколько миллиметров вещества солнечных недр. Если представить себе, что через Солнце проходит мощный пучок нейтрино с энергией каждой частицы в 10 млн эВ, то из нескольких десятков миллионов нейтрино поглотится только одно. Отсюда ясно, что обнаружить поток солнечных нейтрино чрезвычайно трудно. Вместе с тем это представляется весьма заманчивым, так как обнаруженные каким-либо способом солнечные нейтрино приходят к нам непосредственно из его глубин. Следовательно, изучая эти нейтрино, можно получить достаточно подробную информацию о физических условиях в центральных областях Солнца.

Страница 40