Возвращение времени. От античной космогонии к космологии будущего - стр. 32
Тем не менее, если мы не принимаем эту концепцию слишком серьезно, картина небольшой подсистемы, эволюционирующей в сопоставлении с показаниями внешних часов, является весьма полезным приближением. В каждый момент измерения мы получаем ряд чисел, характеризующих конфигурацию подсистемы в это время, и, следовательно, определяем точки в конфигурационном пространстве. Мы можем идеализировать эту последовательность точек с помощью кривой в конфигурационном пространстве (рис. 9). Она представляет собой историю эволюции подсистемы в виде записанной последовательности измерений ее конфигурации. Как и в случае игры Дэнни и Джанет, в этой картине время не присутствует. Осталась траектория в пространстве возможных конфигураций, несущая информацию о прошлом. После эксперимента у нас остается представление о движении подсистемы, которое разворачивалось во времени всего раз – посредством математического объекта, которым является кривая в пространстве возможных конфигураций подсистемы.
Рис. 9. Конфигурационное пространство и проходящая через него кривая истории.
Конфигурационное пространство существует вне времени – предполагается, что всегда. Когда я говорю о “пространстве возможных конфигураций”, я имею в виду, что если бы я пожелал, то поместил бы подсистему в любую из этих конфигураций в любое время. История системы в представлении такой кривой начинается с ее первой точки. Эта кривая, однажды построенная, существует вне времени. Это возвращает нас к ключевому вопросу: является ли исчезновение времени в таком представлении отражением реальности – или это заблуждение, непредвиденное следствие метода приблизительного описания малых частей Вселенной?
Ньютон сделал больше, нежели открыл способ описать движение. Он смог предсказывать его. Галилей обнаружил, что мяч летит по параболе. Ньютон дал нам метод определения формы траектории для множества случаев. Этот метод и есть содержание его трех законов движения. Они могут быть резюмированы следующим образом. Чтобы предсказать траекторию мяча, необходимо знать:
а) Исходное положение мяча;
б) Начальную скорость мяча (как быстро и в каком направлении он движется);
в) Силы, которые будут действовать на мяч во время движения.
Располагая этой информацией и опираясь на законы Ньютона, можно предсказать траекторию. Мы можем запрограммировать компьютер, чтобы он сделал это вместо нас. Задайте три начальных условия, и компьютер выдаст траекторию. Решение уравнений Ньютона представляет собой кривую в конфигурационном пространстве, историю системы с момента, в который приготовлена система или начаты наблюдения. Конфигурация системы в этот момент называется