Размер шрифта
-
+

Возвращение времени. От античной космогонии к космологии будущего - стр. 15

Несмотря на то, что в природе не встречаются идеальные окружности или параболы, у них есть общее с материальными объектами свойство: устойчивость по отношению к манипуляциям. Число – отношение длины окружности к ее диаметру – это идея. Но только лишь идея была высказана, как значение стало объективным. Были попытки узаконить значение, и они продемонстрировали наше глубокое непонимание. Мы не можем изменить значение, как бы нам ни хотелось. То же верно для свойств кривых, да и любого математического объекта.

Но кривые и числа (даже если они сходны с природными объектами тем, что не зависят от наших желаний) не идентичны природе. В реальном мире всегда присутствует время. Все в потоке времени. Каждое сделанное нами наблюдение имеет временную отметку. Мы и все вещи вокруг нас существуют в течение определенного временного интервала и не существуют до и после него.

Математические объекты вне времени. Число не имеет даты рождения, прежде которой оно не существовало или принимало другое значение. Утверждение Евклида о том, что параллельные линии на плоскости не пересекаются, всегда останется верным. Математические утверждения касательно кривых или чисел не требуют временных характеристик. Но как нечто может существовать вне времени?[17]

Тысячелетиями люди спорят об этом и не пришли к единому мнению. Но одно предположение существует очень давно: математические объекты существуют вне нашего мира, в другой реальности. Таким образом, существует не два типа объектов, связанных со временем и вечных, а два мира: связанный с временем и вечный.

Представление о том, что математические объекты существуют в ином мире, приписывают Платону. Он учил, что математик, говорящий о треугольнике, говорит об идеальном треугольнике: в той же степени реальном, но существующем в ином мире – вне времени. Теорема о сумме углов треугольника, равной 180°, не выполняется точно для любого реального треугольника, но абсолютно верна для идеального треугольника. Когда мы доказываем теорему, мы узнаем о том, что вне времени, и показываем, что теорема была верна в прошлом и будет верна в будущем. Если Платон прав, то мы можем, рассуждая, узнавать вечные истины. Некоторые математики утверждают, что черпают знания из идеального мира.

Когда я желаю вкусить платонизма, я приглашаю на обед своего друга Джима Брауна. Мы оба любим вкусно поесть, и во время еды он не спеша и уже в который раз рассказывает мне о своей вере в мир математики, существующий вне времени. Джим – не обычный философ. Его острый ум сочетается с веселым нравом. Вы сразу чувствуете, что он счастлив, и само знакомство с ним делает вас счастливым. Он прекрасно знает все доводы за и против платонизма и охотно обсуждает те, которые не может опровергнуть. Но я так и не смог пошатнуть его веру в существование вневременного мира математических объектов. Я иногда спрашиваю себя: уж не вера ли в идеальный мир делает Джима счастливым?

Страница 15