Размер шрифта
-
+

Вопрос жизни. Энергия, эволюция и происхождение сложности - стр. 18


Рис. 2. Этапы развития жизни на Земле. На шкале отражены примерные даты ключевых событий (млрд лет). Многие датировки остаются спорными, но ясно, что бактерии и археи появились на 1,5-2 млрд лет раньше эукариот.


Если мы продвинемся по временной шкале на несколько сотен миллионов лет вперед, то увидим уже более отчетливые следы жизни, столь же надежные и весомые, как запечатлевшие их камни Австралии и Южной Африки. Во-первых, это микроокаменелости, очень похожие на клетки. Впрочем, пытаться отнести эти окаменевшие клетки к одной из современных групп живых организмов – занятие неблагодарное. Многие микроскопические окаменелости покрыты слоем углерода с характерным изотопным составом. Но эти изотопные следы жизни гораздо более достоверны, они определенно появились в результате биохимических, а не геохимических процессов. Во-вторых, это образования, похожие на строматолиты – каменные идолы мира бактерий. В строматолитах растущие клетки образуют слои. Нижележащие слои постепенно минерализуются, и образуются удивительные каменные столбы высотой до 1 м. Кроме окаменевших остатков бактерий, 3,2 млрд лет назад на Земле появляются огромные геологические образования площадью в несколько сотен квадратных километров и толщиной в десятки метров – полосчатые железистые формации и углистые сланцы. Мы привыкли считать, что бактерии и минералы принадлежат к двум разным мирам – живому и неживому, однако огромные залежи осадочных горных пород появились в результате жизнедеятельности бактерий. Так образовались и полосчатые железистые формации – удивительные по красоте минералы, расписанные красными и черными линиями: когда бактерии отнимают электроны у ионов двухвалентного железа, растворенных в воде океана (такая форма железа распространена при отсутствии кислорода), образуется нерастворимая ржавчина, оседающая на дно. До сих пор остается загадкой, как в этих горных породах образовались полосы, но смещение изотопного состава и здесь выдает следы жизни.

Обширные железистые отложения указывают на то, что жившие тогда организмы уже научились фотосинтезу. Но это не хорошо нам знакомый тип фотосинтеза, который мы можем наблюдать у растений и водорослей, а его примитивная предковая форма. Во всех формах фотосинтеза энергия света расходуется на то, чтобы оторвать электроны от субстрата, который не склонен их отдавать. Таким образом, энергия света преобразуется в энергию электронов. Затем эти электроны используются, чтобы включить углекислый газ в органические молекулы. В качестве источника электронов в фотосинтезе могут использоваться разнообразные субстраты, но чаще всего – растворимые в воде ионы двухвалентного железа, сероводород и вода. Когда от этих субстратов отрываются электроны, они превращаются в окисленные формы: осадки ржавчины, элементарную серу и кислород. Вода – это, пожалуй, наихудший источник электронов для фотосинтеза, и 3,2 млрд лет назад живые организмы предпочитали пользоваться другими субстратами. Как заметил биохимик Альберт Сент-Дьерди, жизнь – это скитание ищущих покой электронов. Точно неизвестен момент, когда живые организмы научились окислять воду (иначе говоря, применять

Страница 18