Размер шрифта
-
+

Вирус, который сломал планету. Почему SARS-CoV-2 такой особенный и что нам с ним делать - стр. 11

Размножение

Попасть внутрь клетки – половина дела. Цель вируса – создать как можно больше собственных копий, которые смогут распространиться и заразить другие клетки. Для этого необходимо синтезировать тысячи новых молекул РНК{11} для загрузки в вирусные частицы, а также все необходимые белки. Своих ресурсов для этого у коронавируса нет, зато есть инструменты, при помощи которых он может заставить клетку выполнить требуемые задачи. Эти инструменты – особые белки, которые переключают клетку из нормального режима работы в режим пособничества вирусу. Информация об аминокислотной последовательности таких хакерских белков закодирована в вирусной геномной молекуле РНК, причем это сделано крайне изобретательно. Чтобы впихнуть все необходимые данные в относительно небольшой геном, коронавирус (и не он один) использует хитрую комбинаторику. Его гены не записаны в молекуле РНК один за другим: они расположены внахлест – то есть перекрываются. Благодаря такому сжатию в одной и той же РНК умещается информация о большем количестве белков, чем если бы гены шли подряд. Если вы готовы немного погрузиться в биологию, чтобы разобраться, как именно вирусы извлекают информацию из перекрывающихся генов, читайте врезку ниже. Если нет – пропустите ее и переходите к следующему абзацу.

СДВИНУТЬ И РАЗРЕЗАТЬ

Заложенную в молекуле РНК информацию считывает клеточная молекулярная машина рибосома. Она выглядит как округлая коробочка с длинной щелью, сквозь которую протягивается нить РНК. В активной рабочей зоне щели в каждый момент времени находятся три нуклеотида – буквы генетического кода. Как вы помните из главы 1, каждая такая тройка кодирует одну аминокислоту – базовую единицу белка. Вокруг рибосомы в цитоплазме плавают все 20 аминокислот, которые переносит специальный транспорт – особым образом свернутые маленькие молекулы РНК. Их называют тРНК, и каждой аминокислоте соответствует строго определенная тРНК. Аминокислоты на своем транспорте могут заплывать в щель рибосомы. Если оказавшаяся там аминокислота «правильная», то есть кодируется именно той тройкой нуклеотидов, которые в этот момент сидят в центре щели, тРНК «прилипнет» к ним и рибосома присоединит переносимую этой тРНК аминокислоту к растущей белковой цепи. После этого рибосома сдвинется по молекуле РНК на три нуклеотида и процесс будет повторяться до момента, пока машинка по синтезу белка не наткнется на стоп-кодон – определенную тройку нуклеотидов, на которых она отвалится от РНК.

Для того чтобы рибосома могла синтезировать с одной РНК несколько белков, вирусы используют хитрый трюк. Недалеко от стоп-кодона последовательность их РНК устроена таким образом, что легко закручивается в петлю. Рибосома умеет расплетать такие структуры, но на это ей требуется время. Петля только часть ловушки. Непосредственно перед ней находится особый участок РНК, который называют скользким. Он состоит из идущих подряд одинаковых букв, и, когда рибосома разбирается с петлей, она может случайно сдвинуться на одну букву, не заметив этого. Раскрутив петлю, рибосома продолжит синтез белка, но его последовательность окажется измененной, так как все следующие тройки нуклеотидов тоже будут сдвинуты на одну букву. В случае SARS-CoV-2 именно так синтезируются белковые цепи ORF1a и ORF1b (см. рис. 3). ORF1a рибосома строит как положено – от начала цепи до стоп-кодона. ORF1b получается, когда она запинается на расположенной ближе к концу ORF1a петле, перескакивает на одну букву и доделывает цепь до стоп-кодона в конце ORF1b. Таким образом, после нескольких циклов синтеза в клетке оказываются более короткие цепи ORF1a и длинная цепь ORF1ab, которая почти целиком включает ORF1a – кроме нескольких последних нуклеотидов, на которых рибосома соскользнула, – и всю цепь ORF1b.

Страница 11