Размер шрифта
-
+

В поисках общей теории роста человечества - стр. 40

Разные части такой популяции могут в таком случае размножаться в разных природно-климатических условиях, иметь различные коэффициенты прироста и считаться отдельными популяциями. А все человечество в целом вообще не представляло собой единое информационное поле ни в какие времена, исключая, возможно, последние два-три столетия.

Вывод здесь такой: обобщенный причинный закон (5) как закон нелинейного роста имеет ограниченное применение и годится лишь для описания временно́й динамики изменения численности сосредоточенной, изолированной популяции [12].

Наибольшую общность закону (5) можно придать, добавив в его правую часть дельта функцию Дирака (7), которая описывает акт творения или случайное зарождение жизни в первобытном океане Земли. Это «обобщение», впрочем, не следует воспринимать слишком серьезно.

Частные случаи общего закона

Если взаимодействия между членами популяции отсутствуют и коэффициент естественного прироста равен нулю, т. е., если убрать в правой части уравнения (5) и линейный, и нелинейный член, то получим уравнение (7), в котором разность между числом родившихся и умерших за единицу времени (Р – С)/Δt равна нулю (т. е. прирост за счет рождений равен убыли за счет смертности), и численность популяции остается неизменной.

В более сложном случае при α ≠ 0 и наличии взаимодействий популяционный гомеостаз (N = const) достигается при тех значениях N, которые обращают правую часть уравнения (5) в нуль. Нелинейный член может быть немонотонной функцией численности, и тогда рост будет более сложным. Устойчивый гомеостаз, когда численность популяции остается неизменной или слабо колеблется около положения равновесия, возможен в тех точках гомеостаза, в которых вторая производная от правой части уравнения (5) – отрицательна [11].


Рис. 1. Состояние популяционного гомеостаза.


Экспоненциальный рост возникает при отсутствии взаимодействий между членами популяции, способных оказать влияние на естественный прирост (он был рассмотрен нами ранее). В этом случае в обобщенном уравнении (5) необходимо отбросить нелинейный член F(N).


Рис. 2. Экспоненциальный рост популяции.


Если для некоторой популяции коэффициент рождаемости есть величина постоянная и не зависит от численности, а коэффициент смертности пропорционален численности, то рост будет логистическим (9). Логистический рост был впервые описан бельгийским математиком Ферхюльстом на примере роста численности населения. Уравнение такого роста – уравнение Ферхюльста – сам Ферхюльст по неизвестным причинам назвал логистическим.

Страница 40