В поисках общей теории роста человечества - стр. 21
Может ли численность роста какой-либо популяции на каком-то этапе своего роста описываться степенным законом? Это возможно лишь при том условии, что на этом этапе прирост численности за небольшой промежуток времени будет пропорционален некоторой степени численности, причем показатель этой степени не должен быть равен единице.
В таком случае вопрос можно сформулировать так: может ли скорость роста численности популяции выражаться в виде степенного закона (3) рис. 1?
Рис. 1. Степенной и экспоненциальный законы роста численности популяции.
При разных значениях параметра m закон (3) описывает параболический, экспоненциальный и гиперболический рост. Возьмем для определенности значения m = 0, 1, 2, которые соответствует трем наиболее часто встречающимся в природе законам: линейному, экспоненциальному и гиперболическому.
Из них только закон экспоненциального роста имеет встроенный масштаб времени или характерное время удвоения численности популяции, что ясно уже из соображений размерности, т. к. показатель экспоненты представлен в виде произведения константы α, умноженной на время t.
Следовательно, величина обратная α, определяющая этот встроенный масштаб времени, должна иметь размерность времени, поскольку в показателе экспоненты может стоять только безразмерная величина.
Термин «встроенный масштаб времени», возможно, является не совсем удачным, поскольку закон экспоненциального роста не содержит в себе какого-то единственного масштаба, в котором можно измерять время протекания процесса. А содержит постоянную времени через которую этот масштаб: время удвоения численности, какое-то другое характерное время, может быть выражен.
Природа экспоненциального роста такова, что если взять произвольную точку на оси времени и откладывать от нее интервалы произвольной, но равной длительности, то численность популяции на последовательности этих интервалов будет расти по закону геометрической прогрессии.
Что в корне отличает его от степенного параболического или гиперболического роста. Для которых не существует встроенного масштаба времени – неизменного времени удвоения численности, т. к. для них это время либо возрастает, либо убывает.
И которые в силу этой своей особенности не могут описывать рост какой-либо популяции, при том условии, конечно, что рост этот определяется причинным законом, т. е. порождается нелинейной положительной обратной связью (НПОС) между численностью и ее естественным приростом. НПОС, причины которой полностью определяются связями (и только связями, а не индивидуальной способностью к размножению) между членами популяции и которая может быть понята́ и описана.