В поисках кота Шредингера. Квантовая физика и реальность - стр. 40
Как и многие люди, изучавшие в те дни радиоактивность, Эйнштейн верил, что актуарные таблицы не были последним словом в этих расчетах и что последующие исследования объяснят, почему конкретный переход происходил в четко определенное время, а не в какое-нибудь другое. Но как раз тогда квантовая теория стала окончательно откалываться от классических идей, и никакой «глубинной причины», по которой радиоактивный распад или энергетические переходы внутри атома происходят в конкретный момент времени, так и не было обнаружено. И правда, кажется, что эти изменения происходят исключительно по воле случая, на статистической основе, и уже из-за этого возникают фундаментальные философские вопросы.
В классическом мире ничего не происходит без причины. Причину любого события можно отследить дальше, чтобы обнаружить причину причины, а затем выяснить, что вызвало ее – и так далее до самого Большого взрыва (если вы космолог) или до момента сотворения мира в религиозном смысле (если вы придерживаетесь этой модели). Но в квантовом мире эти прямые причинно-следственные связи исчезают, стоит только взглянуть на радиоактивный распад и атомные переходы. Электрон не передвигается с более высокого энергетического уровня на более низкий в конкретный момент и по конкретной причине. Более низкий энергетический уровень статистически желаннее для атома, поэтому высока вероятность (а уровень вероятности можно даже проквантовать), что рано или поздно электрон совершит этот переход. Но нет возможности установить, когда случится такой переход. Никакая внешняя сила не толкает электрон и никакой внутренний механизм не отсчитывает время прыжка. Это просто происходит без определенных причин в какой-то момент времени.
Это не полное нарушение причинно-следственной связи. Хотя многие ученые XIX столетия пришли бы в ужас от этой идеи, я сомневаюсь, что хоть кто-то из читателей обеспокоен ею. Но это только верхушка айсберга, первый намек на истинную странность квантового мира, о котором стоит упомянуть, хотя его истинное значение в то время еще не разглядели. Признание пришло в 1916 году, и пришло оно от Эйнштейна.
Атомы в перспективе
Нам пришлось бы долго и нудно перечислять все мельчайшие усовершенствования модели атома Бора, которые были сделаны до 1926 года, а потом обреченно сказать, что большинство этих дополнений, стремившихся к истине, все равно было ошибочно. Однако атом Бора так прочно вошел в учебники и популярную литературу, что невозможно совсем обойти его вниманием. В своей итоговой версии он стал практически последней моделью атома, которая хоть как-то напоминает тот образ, к которому мы привыкли в обычной жизни.