Размер шрифта
-
+

Убийственные большие данные. Как математика превратилась в оружие массового поражения - стр. 19

Это несправедливо. Опросник включает обстоятельства рождения и воспитания преступника, данные о его или ее семье, окружении и друзьях. Но подобные детали не должны иметь отношения к уголовному делу или к приговору. В самом деле, если бы прокурор попытался очернить подзащитного, упомянув количество судимостей его брата или уровень преступности в районе, где он живет, адвокат бы тут же воскликнул: «Возражаю, ваша честь!» И разумный судья принял бы это возражение. Таковы основы нашей правовой системы. Нас судят за то, что мы делаем, а не за наше происхождение. И хотя мы не знаем, сколько именно баллов добавляют эти пункты анкет, любое значение, отличное от нуля, несправедливо.

Многие скажут, что статистические системы, подобные LSI-R, все же достаточно эффективны в оценке вероятности рецидива – по крайней мере, они более точны, чем интуитивные предположения того или иного судьи. Но даже если мы отложим в сторону, совсем ненадолго, серьезнейшую проблему справедливости, мы обнаружим, что соскальзываем в губительную петлю обратной связи ОМП. Осужденный с «высоким риском», скорее всего, окажется в прошлом безработным выходцем из района, в котором многие его родственники и друзья имели столкновения с законом. Отчасти из-за большого количества баллов, набранного в ходе заполнения анкеты, он получает более длительный тюремный срок, который закроет его на большее количество лет в тюрьме в окружении таких же преступников, как он, – что повышает вероятность его возвращения в тюрьму. В конце концов его выпускают на свободу, и он возвращается все в тот же бедный район, но на этот раз с судимостью, которая еще больше затруднит ему получение работы. Если он совершит еще одно преступление, модель оценки риска рецидива может объявить об очередном своем успехе. Но на самом деле это сама модель вносит вклад в токсичный цикл и помогает его поддерживать. Это ключевое свойство оружия математического поражения.

* * *

В этой главе мы познакомились с тремя типами статистических моделей. Бейсбольные модели по большей части можно счесть здоровыми. Они прозрачны, постоянно обновляются, и все допущения и выводы можно легко проследить. Такие модели подпитываются статистикой самой игры, а не прокси-реальностью. Люди, которых их составляют, понимают процесс и разделяют цель модели: выиграть Мировую серию. (Хотя, конечно, это не значит, что многие игроки, как только подойдет время подписывать контракт, не попытаются поспорить с оценкой модели: «Конечно, я сделал двести раз страйк-аут, но только посмотрите на мои хоум-раны…»)

Страница 19