Размер шрифта
-
+

Убийственные большие данные. Как математика превратилась в оружие массового поражения - стр. 14

Если бы я посвятила все свое время этой работе, то за несколько месяцев могла бы получить весьма неплохую модель. Я бы превратила систему приготовления еды, хранящуюся в моей голове, – мою неформальную внутреннюю модель – в формальную внешнюю. В этой модели я бы вынесла наружу, во внешний мир, свои знания и умения. Я бы построила автоматическую версию себя, которой могли бы воспользоваться другие люди даже в мое отсутствие.

Однако в ней всегда бы были ошибки, потому что любые модели всегда представляют собой упрощения. Ни одна модель не может включить в себя всю сложность мира или нюансы человеческого общения. Какая-то важная информация неизбежно оказывается упущенной. Возможно, я бы забыла сообщить своей модели о том, что правило запрета на фастфуд менее строго соблюдается в дни рождения или что сырая морковка пользуется большей популярностью, чем вареная.

Чтобы создать модель, таким образом, мы делаем выбор и решаем, что достаточно важно для включения в нее. Мы упрощаем мир до его игрушечной версии, которая может быть легко понята и из которой мы можем извлечь важные факты и действия. Мы ожидаем от модели выполнения только одной работы и заранее смиряемся с тем, что иногда она будет работать бестолково, с огромными пробелами.

Иногда пробелы не имеют значения. Когда мы запрашиваем у Google Maps маршрут, программа моделирует мир как набор улиц, туннелей и мостов. Она игнорирует здания, потому что те не имеют отношения к задаче. Когда авиационное программное обеспечение управляет самолетом, оно моделирует ветер, скорость самолета и посадочную полосу внизу, но игнорирует улицы, туннели, здания и людей.

Пробелы модели отражают суждения и приоритеты ее создателей. И хотя выбор при составлении Google Maps и авиационного программного обеспечения кажется очевидным, в других случаях он гораздо более проблематичен. Если мы вернемся к примеру вашингтонских школ, их модель подсчета увеличения коэффициента знаний учеников оценивает учителей по большей части на основе данных тестов учеников, игнорируя такие факторы, как вовлеченность учителя в процесс, его работу над определенными навыками, классное руководство и помощь ученикам в их личных и семейных проблемах. Она слишком проста и жертвует точностью и охватом во имя эффективности. При этом, с точки зрения администраторов, она предоставляет эффективное орудие для выявления сотен якобы негодных учителей – даже если существует риск неверной интерпретации профессионализма некоторых из них.

Здесь мы видим, что модели, несмотря на их кажущуюся непредвзятость, отражают заложенные в них цели и идеологию. Когда я исключала возможность поедания печенья за каждым приемом пищи, я переносила свою идеологию на модель еды. Это то, что все мы делаем машинально, не задумываясь. Наши собственные ценности и желания влияют на наш выбор, от данных, которые мы предпочитаем собирать, до вопросов, которые мы задаем. Модели – это мнения, заключенные в математическую форму.

Страница 14