Размер шрифта
-
+

Темные данные. Практическое руководство по принятию правильных решений в мире недостающих данных - стр. 4

Темные данные принимают различные формы, возникают по разным причинам, и эта книга среди прочего содержит классификацию типов темных данных, обозначаемых как DD-тип x. Всего я насчитал 15 таких DD-типов, но не берусь утверждать, что эта классификация является исчерпывающей. Учитывая большое разнообразие причин, по которым возникают темные данные, не исключено, что полная классификация просто невозможна. Более того, многие образцы темных данных соединяют в себе несколько DD-типов – они могут действовать независимо друг от друга, а могут проявлять некое подобие синергии, усиливая негативный эффект. Но, несмотря на это, обладание информацией о DD-типах и изучение темных данных на конкретных примерах помогает вовремя выявить проблему и защититься от возможных угроз. Список DD-типов, упорядоченных по сходству, вы найдете в конце этой главы, а в главе 10 я опишу их более подробно. В книге есть указания на то, где можно встретить примеры того или иного типа, однако я намеренно не пытался перечислить все возможные места существования темных данных – в этой книге такой подход был бы излишним.

Давайте перейдем к одному из таких примеров. В медицине понятие «травма» означает повреждение с возможными долговременными последствиями. Травмы являются одной из наиболее серьезных причин сокращения продолжительности жизни и инвалидности, а также самой распространенной причиной гибели людей в возрасте до 40 лет. Компьютерная база данных TARN является самой большой медицинской базой данных о травмах в Европе. В нее стекаются данные о полученных травмах из более чем 200 больниц, в числе которых 93 % всех больниц Англии и Уэльса, а также больницы в Ирландии, Нидерландах и Швейцарии. Безусловно, это очень большой объем данных для прогнозирования и изучения эффективности медицинского вмешательства при травмах.

Доктор Евгений Миркес и его коллеги из Лестерского университета в Великобритании провели исследование этой базы данных и выяснили: из 165 559 зарегистрированных травм исход 19 289 случаев оказался неизвестным[4]. «Исход» в данном случае определяется тем, выживает пациент или нет в течение 30 дней после травмы. Иначе говоря, 30-дневная выживаемость неизвестна для более чем 11 % пациентов. Этот пример иллюстрирует распространенную форму темных данных – DD-тип 1: данные, о которых мы знаем, что они отсутствуют. Иначе говоря, нам известно, что травмы у этих пациентов чем-то закончились, – мы просто не знаем, чем именно.

Можно, конечно, сказать: «Нет проблем, давайте просто проанализируем 146 270 пациентов, для которых исход известен, и будем делать выводы и прогнозы на основе этой информации». В конце концов, 146 270 тоже немало – в сфере медицины это уже большие данные. Поэтому мы можем смело утверждать, что понимание, основанное на этих данных, будет верным.

Страница 4