Размер шрифта
-
+

Темные данные. Практическое руководство по принятию правильных решений в мире недостающих данных - стр. 20

Выхлопные данные, описывающие людей, называются административными[13]. Особая сила административных данных заключается в том, что они сообщают не то, что люди говорят о своих действиях (как, например, в случае опросов), а то, что они делают на самом деле. Такие данные показывают, что люди купили, где они это купили, что они ели, какие поисковые запросы делали и т. д. Считается, что административные данные намного точнее демонстрируют реалии общества, чем ответы людей на вопросы об их действиях и поведении. Это привело к накоплению правительствами, корпорациями и рядом других организаций гигантских баз данных, описывающих наше поведение. Нет сомнения в том, что эти базы данных представляют собой очень ценный ресурс, настоящую золотую жилу в сфере знаний о человеческом поведении. Сделанные на их основе выводы помогут усовершенствовать процесс принятия решений, повысить корпоративную эффективность и лучше продумать государственную политику – конечно, при условии, что эти выводы будут точными и не подвергнутся влиянию темных данных. Кроме того, когда данные, которые мы хотели бы сохранить в темноте, становятся известны другим, возникают риски нарушения конфиденциальности. Мы вернемся к этому вопросу чуть дальше, а пока давайте поищем темные данные, причем в самых неожиданных местах.

Один из очевидных и очень серьезных недостатков административных данных кроется в самом их преимуществе: они сообщают о том, что на самом деле делают люди, а это может быть полезным только тогда, когда вы не пытаетесь исследовать, что люди думают и чувствуют. Например, своевременное обнаружение недовольства сотрудников тем, как идут дела, может быть не менее важным для корпорации, как и наблюдение за их поведением в жестких рамках повседневной работы, когда начальник буквально стоит за спиной. Но, чтобы узнать, что чувствуют люди, нам придется активно допытываться этого, например с помощью опроса. Для решения разных задач требуются и разные стратегии сбора данных, при этом каждая из них грозит своими особыми проблемами, связанными с темными данными.

Мое первое настоящее знакомство с темными данными состоялось в сфере банковских услуг для потребительского сектора: кредитные и дебетовые карты, персональные займы, автокредиты, ипотека и прочие подобные вещи. Данные о транзакциях по кредитным картам представляют собой гигантские наборы данных, поскольку миллионы клиентов ежегодно совершают миллиарды операций. Так, с июня 2014 г. по июнь 2015 г. было совершено около 35 млрд транзакций по картам Visa

Страница 20