Темные данные. Практическое руководство по принятию правильных решений в мире недостающих данных - стр. 15
В главе 2 пойдет речь о так называемых рандомизированных контролируемых исследованиях. В главе 9 мы вновь вернемся к ним, но рассмотрим с иного ракурса. Для примера возьмем медицинские исследования, когда сравнивают два метода лечения и при этом назначают их двум группам пациентов. Однако просто разделить людей на группы недостаточно. Если известно, кому какое лечение назначено, это может повлиять на результаты – исследователи могут относиться к одной из групп более внимательно, чем к другой. Например, когда сравнивают новый непроверенный метод лечения со стандартным, исследователи, порой даже не осознавая этого, склонны тщательнее отслеживать побочные эффекты и проводить измерения в первой группе. Чтобы преодолеть эту потенциальную необъективность, в подобных исследованиях распределение методов лечения скрывают от исследователей (DD-тип 13: намеренно затемненные данные). В таких случаях говорят о слепом исследовании, чтобы указать на темные данные.
Другой хорошо известный метод, использующий темные данные, – выборочные опросы. Возможно, мы захотим узнать мнение горожан или покупателей конкретной продукции, но выяснять мнение всех без исключения слишком затратно. К тому же это занимает много времени, и мнения могут измениться. Альтернативой тотальному опросу является опрос отдельных представителей группы. Мнения тех, кто не попадает в наш опрос, и будут темными данными. Вроде бы такая стратегия выглядит рискованно – она явно напоминает историю с базой данных TARN. Но оказывается, что, используя продуманные методы отбора людей для опроса, мы можем получить точные и достоверные ответы, при этом быстрее и дешевле, чем если бы обращались к каждому.
Третий способ заставить темные данные работать на нас заключается в так называемом сглаживании данных. В главе 9 мы увидим, что этот метод сродни выявлению незамеченных и не поддающихся наблюдению видов темных данных (DD-тип 14: фальшивые и синтетические данные) и позволяет получить более точные оценки и прогнозы.
Другие способы использования темных данных, которые носят весьма экзотические названия, мы также рассмотрим в главе 9. Некоторые из них широко применяются в таких областях, как машинное обучение и искусственный интеллект.
Всюду вокруг нас
Как мы видим, темные данные вездесущи. Они могут появляться повсеместно и где угодно, а их наиболее опасное свойство заключается в том, что мы по определению не можем быть уверенными в их отсутствии. Это означает, что необходимо постоянно быть начеку и задавать себе вопрос: «Что мы упускаем?