Размер шрифта
-
+

Темные данные. Практическое руководство по принятию правильных решений в мире недостающих данных - стр. 10

Немного поразмыслив, вы поймете, что ответ довольно прост – в основном мы попадаем в автобусы в часы пик, именно поэтому они и набиты битком. Вот почему большинство людей видит автобусы переполненными. В то же время о пустом автобусе будет просто некому сообщить, что он пуст (разумеется, не считая водителя). Этот пример иллюстрирует темные данные DD-тип 3: выборочные факты. Иногда, впрочем, это может быть необходимым следствием сбора данных, и в таком случае мы получаем DD-тип 4: самоотбор. Я приведу два моих любимых примера, похожих и в то же время несопоставимых по своему масштабу.

Первый – известная карикатура, на которой изображен человек, стоящий перед большой картой, какие обычно висят на вокзалах. В центре карты находится красная точка с надписью «Вы здесь». «Как?! – думает потрясенный человек. – Как они узнали это?» Они узнали, потому что отталкивались от простого факта, что каждый, кто смотрит на эту красную точку, должен находиться непосредственно перед ней. Мы имеем дело с очень узкой выборкой, отсекающей всех, кто находится в другом месте.

Данные могут быть собраны, только если имеется кто-то или что-то для их сбора, например измерительный прибор. Второй пример самоотбора связан с антропным принципом, который, по сути, говорит, что Вселенная должна быть такой, какая она есть, а иначе нас бы просто не существовало и мы бы не смогли наблюдать ее. У нас нет данных из разных вселенных по одной простой причине – мы там не были. Это означает, что любые выводы, которые мы делаем, неизбежно ограничиваются нашей Вселенной (а точнее, вселенными такого же типа): как и в случае с бостонскими выбоинами, может происходить масса всего, о чем мы не знаем.

Из этого примера наука может извлечь для себя важный урок. Теория может идеально согласовываться с данными, но сами данные имеют ограничения. И это относится не только к сверхвысоким температурам, геологическим эпохам или космическим расстояниям. Если вы экстраполируете теорию за пределы, в которых были собраны данные, то всегда есть вероятность того, что она окажется недействительной. Экономические теории, основанные на данных, собранных в период процветания, часто оказываются несостоятельными во время рецессии, а законы Ньютона работают только тогда, когда речь не идет о крошечных объектах, высоких скоростях и прочих крайностях. В этом и заключается суть темных данных DD-тип 15: экстраполяция за пределы ваших данных.

У меня есть классная футболка от сайта веб-комиксов xkcd.com, на которой общаются два персонажа. Один говорит: «Раньше я думал, что корреляция подразумевает причинность». В следующем кадре он продолжает: «Потом я прошел курс статистики, и теперь я в этом не уверен». Другой персонаж говорит ему: «Похоже, курс помог», а первый отвечает: «Возможно, но не факт»

Страница 10