Тайны нашего мозга, или Почему умные люди делают глупости - стр. 36
Зрение начинается в глазу, который устроен наподобие камеры. Линзы в передней части глаза фокусируют свет на сетчатку – тонкий слой нейронов позади. Нейроны сетчатки напоминают слой пикселей, каждый из которых определяет количество света в конкретной части зрительного образа. Однако это создает проблемы для мозга, поскольку сетчатка трансформирует трехмерный мир в паттерны активности двумерного слоя нейронов, отбрасывая немалое количество неукладывающейся информации. (Возможно, вы слышали о том, что сетчатка переворачивает зрительный образ вниз головой. Это правда, но она никак не затрагивает наше зрение, поскольку мозг ожидает этого и интерпретирует образы правильно.)
Три различных типа так называемых колбочек в глазу различают красный, зеленый и синий цвета при ярком освещении. Эти нейроны посылают все более сильные сигналы по мере того, как интенсивность цвета растет. Другие цвета создаются при помощи комбинации различных уровней активности этих трех типов клеток. Этот процесс напоминает создание множества оттенков цветов при помощи смешивания основных красок. Однако основные цвета различаются, поскольку цвет смешивается не так, как краски. (Для примера положите вместе красный и зеленый пластик и посветите на них одновременно парой фонариков в одну точку – вы увидите желтый цвет. При смешивании красной и зеленой краски результат будет сильно отличаться – коричневый.) Палочки – четвертый тип клеток – различают интенсивность света при сумрачном освещении, однако не связаны с цветовым зрением. Именно поэтому вы не можете хорошо различать цвета при романтическом освещении. Палочки и колбочки взаимодействуют с другими нейронами сетчатки, что позволяет сделать дополнительные выводы о видимом объекте. Например, клетки сетчатки, расположенные на выходе, несут информацию об относительной яркости света по сравнению с соседней областью, а не об абсолютной яркости каждого пикселя. Затем эта информация посылается в зрительный центр мозга, а также в области, контролирующие движения глаз и головы.
Одним из лучших примеров того, как эксперименты на животных могут оказать неожиданную пользу человеческой медицине, является изучение зрительного восприятия.
Поскольку два глаза находятся в различных частях головы, они видят мир с несколько разных углов. Это создает проблему для развития мозга: чтобы создать связную картинку, мозгу требуется собрать воедино информацию, полученную из обоих глаз, относящуюся к одному и тому же изображению. Заранее определить эту разницу в восприятии глаз сложно, поскольку размер головы у всех разный и расстояние между глазами меняется с ростом человека. Поэтому мозг обучается делать это, сочетая поступающую одновременно из каждого глаза информацию и предполагая, что она относится к одному и тому же изображению. Если животное смотрит одним глазом в юном возрасте, то этого обучения не произойдет, так как почти все зрительные нейроны в мозге будут переносить сигналы только из одного глаза. Если животное теряет зрение одним глазом в определенном возрасте (у кошек это приблизительно первый месяц после рождения, у людей – позднее), то мозг обучается интерпретировать информацию, полученную только из другого глаза. Этот паттерн не может быть изменен позднее в жизни. Дэвид Хьюбел и Торстен Визел получили за открытие этого процесса Нобелевскую премию.