Тайны чисел: Математическая одиссея - стр. 20
Проблема простых чисел состоит в том, что бывает по-настоящему сложно понять, где окажется следующее из них; по-видимому, не существует каких-либо закономерностей в их последовательности, способных помочь нам в их поиске. На поверку они скорее напоминают набор номеров лотерейных билетов, а не строительные кирпичики математики. Это чем-то напоминает ожидание автобуса: крайне долго нет ни одного, но вдруг они идут один за другим с короткими интервалами. Такое поведение весьма характерно для случайных процессов, как мы увидим в главе 3.
За исключением 2 и 3, ближайшее расстояние между двумя простыми числами может быть равно 2, как между 17 и 19, либо 41 и 43, потому что число между каждой парой будет четным, следовательно, не простым. Такие пары крайне близких простых чисел называются простыми числами-близнецами. Из-за моей одержимости простыми числами мои дочери-двойняшки чуть не были названы 41 и 43. В конце концов, если Крис Мартин и Гвинет Пэлтроу назвали своего ребенка Яблоком, а Фрэнк Заппа своих дочерей – Лунный Модуль и Дива-кексик, то почему у меня не могут быть близняшки 41 и 43? Но жена не разделяла мой энтузиазм, поэтому эти числа стали «тайными» вторыми именами наших дочерей.
Хотя простые числа встречаются все реже и реже, когда вы углубляетесь во вселенную чисел, удивительно, насколько часто попадаются простые числа-близнецы. Например, после простого числа 1129 на протяжении 21 последующего числа нет ни одного простого, а затем неожиданно появляется пара 1151 и 1153. Когда вы проходите 102 701, вам необходимо преодолеть 59 составных чисел, а затем внезапно возникают простые числа-близнецы 102 761 и 102 763. В наибольших простых числах-близнецах, известных к началу 2009 г., 58 711 цифр. Если учесть, что число атомов в наблюдаемой Вселенной имеет 80 цифр, такие числа оказываются до нелепости большими.
Однако будут ли и затем встречаться близнецы? Благодаря доказательству Евклида мы знаем, что и дальше найдем бесконечно много простых чисел, но как насчет их пар? Пока еще никто не смог придумать хитроумное доказательство, подобное Евклидову, что простых чисел-близнецов бесконечно много.
Одно время казалось, что близнецы могут сыграть ключевую роль в раскрытии тайны простых чисел. В книге «Человек, который принял жену за шляпу» Оливер Сакс описывает случай из реальной жизни, когда два аутистичных близнеца, обладавших феноменальными способностями, использовали простые числа как тайный язык. Обыкновенно братья сидели в клинике Сакса и обменивались между собой большими числами. Сначала Сакса озадачил их диалог, но как-то вечером он сумел понять его секрет. Выучив одно простое число, он решил проверить свою догадку. На следующий день он решил присоединиться к близнецам, которые обменивались шестизначными числами. Сакс, воспользовавшись паузой, произнес семизначное число, что застало близнецов врасплох. Некоторое время они сидели в раздумьях, так как число выходило за пределы их привычного диапазона, но потом одновременно улыбнулись, как будто узнали старого друга.