Стратегические игры. Доступный учебник по теории игр - стр. 32
В отношении выигрышей нужно четко понимать два важных момента. Во-первых, выигрыш одного игрока охватывает все аспекты исхода игры, представляющие для него интерес. В частности, игроку необязательно быть эгоистом, однако его забота о других должна быть включена в числовую шкалу выигрышей. Во-вторых, мы будем исходить из предположения, что если игрок сталкивается со случайным множеством исходов игры, то число, связанное с этим множеством, представляет собой среднее от выигрышей по каждому отдельному исходу, взвешенных по их вероятности. Таким образом, если в рейтинге одного игрока исход А имеет выигрыш 0, а исход Б – выигрыш 100, то множество исходов А с вероятностью 75 процентов и Б с вероятностью 25 процентов должно обеспечивать выигрыш 0,75 × 0 + 0,25 × 100 = 25. Этот показатель часто называют ожидаемым выигрышем от случайного множества исходов игры. Слово «ожидаемый» имеет особый подтекст на языке теории вероятностей. Под ним подразумевается не то, что вы предполагаете или ожидаете получить, а математическое (вероятностное, статистическое) ожидание, которое означает среднее от всех возможных исходов, где каждому исходу присваивается вес, пропорциональный его вероятности.
Второй момент создает потенциальные трудности. Рассмотрим игру, в которой участники получают или теряют деньги, а выигрыш измеряется в денежной сумме. Если игрок может ничего не получить с вероятностью 75 процентов и получить 100 долларов с вероятностью 25 процентов, то ожидаемый выигрыш составит 25 долларов, если его рассчитывать так, как в предыдущем примере. Допустим, что столько же игрок бы выиграл и в результате простого неслучайного исхода. Иными словами, основываясь на таком подходе к расчету выигрышей, человеку должно быть безразлично, получит он 25 долларов наверняка или пойдет на риск в случае множества возможных исходов, по которому средний выигрыш составляет 25 долларов. На первый взгляд может показаться, что большинство людей предпочтут верные 25 долларов рискованной игре, обеспечивающей средний выигрыш в том же размере.
Очень простая модификация процесса вычисления выигрышей позволяет обойти эту трудность. Мы будем их измерять не в денежном выражении, а с использованием нелинейного взвешивания денежных сумм. Речь идет о методе ожидаемой полезности, на котором мы подробнее остановимся в приложении к главе 7. А пока поверьте нам на слово: включение в концептуальную модель теории игр такого показателя, как отношение игроков к риску, – вполне выполнимая задача. В теории игр почти все основано на методе ожидаемой полезности, и он действительно полезен, хотя и не лишен недостатков. Мы будем его придерживаться в данной книге, но при этом укажем на ряд проблем, которые он оставляет нерешенными. Простой пример применения этого метода представлен в