Размер шрифта
-
+

Совместимость. Как контролировать искусственный интеллект - стр. 16

В XVIII в. швейцарский математик Даниил Бернулли заметил, что это правило, по-видимому, не работает для больших денежных сумм[26]. Рассмотрим, например, такие две ставки:

А: 100 % вероятности получить $10 000 000 (ожидаемая ценность $10 000 000).

Б: 1 % вероятности получить $1 000 000 100 (ожидаемая ценность $10 000 001).

Большинство читателей этой книги, как и ее автор, предпочли бы ставку А, несмотря на то что ожидаемая ценность призывает к противоположному выбору! Бернулли предположил, что ставки оцениваются не по ожидаемой денежной ценности, а по ожидаемой полезности. Полезность – способность приносить человеку пользу или выгоду – является, по его мысли, внутренним, субъективным качеством, связанным, но не совпадающим с денежной ценностью. Главное, полезность отличается убывающей доходностью по отношению к деньгам. Это означает, что полезность данной суммы денег не строго пропорциональна сумме, но возрастает медленнее ее. Например, полезность владения суммой в $1 000 000 100 намного меньше сотни полезностей владения $10 000 000. Насколько меньше? Спросите об этом себя! Какими должны быть шансы выиграть $1 млрд, чтобы это заставило вас отказаться от гарантированных $10 млн? Я задал этот вопрос своим студентам, и они ответили, что около 50 %, из чего следует, что ставка Б должна иметь ожидаемую ценность $500 млн, чтобы сравниться с желательностью ставки А. Позвольте повторить: ставка Б была бы в 50 раз выше ставки А в денежном выражении, но обе ставки имели бы равную полезность.

Введение понятия полезности – невидимого свойства – для объяснения человеческого поведения посредством математической теории было потрясающим для своего времени. Тем более что, в отличие от денежных сумм, ценность разных ставок и призов с точки зрения полезности недоступна для прямого наблюдения. Полезность приходится выводить из предпочтений, демонстрируемых индивидом. Пройдет два столетия, прежде чем практические выводы из этой идеи будут полностью разработаны и она станет общепринятой среди статистиков и экономистов.

В середине XX в. Джон фон Нейман (великий математик, в честь которого названа архитектура компьютеров – «архитектура фон Неймана»[27]) и Оскар Моргенштерн опубликовали аксиоматическую основу теории полезности[28]. Имеется в виду следующее: поскольку предпочтения, выражаемые индивидом, отвечают определенным базовым аксиомам, которым должен отвечать любой рациональный агент, выбор, сделанный этим индивидом, неизбежно может быть описан как максимизирующий ожидаемое значение функции полезности. Короче говоря,

Страница 16