Синдром Паганини и другие правдивые истории о гениальности, записанные в нашем генетическом коде - стр. 62
Однако если у избыточности есть недостатки, то, как указывал Шеннон, должны быть и достоинства. Некоторая избыточность языка гарантирует, что мы сможем поддержать беседу, даже если некоторые слоги или целые слова будут утрачены. Блшнств лдй бз прблм мжт прчт прдлжн с прпснн бкв. Другими словами, если слишком большая избыточность отнимает время и энергию, небольшая – препятствует появлению ошибок. Применительно к ДНК избыточность тоже имеет смысл: это делает менее вероятным появление неверных аминокислот в результате мутаций. Более того, биологи подсчитали, что даже если мутация внедрит в организм неправильную аминокислоту, мать-природа подтасует так, что в любом случае шансы на то, чтобы новая аминокислота имела те же физические и химические характеристики и, следовательно, сложилась надлежащим образом, увеличатся. Это можно назвать аминокислотой-синонимом, так как клетки могут сохранить смысл «предложения».
Избыточность может иметь место и за пределами генов. Некодирующая ДНК – длинная последовательность ДНК между генами – содержит некоторые слишком избыточные отрезки символов, которые выглядят так, как будто кто-то не глядя провел пальцами по клавиатуре природы. Хотя эти и прочие участки кажутся мусором, ученым неизвестно, действительно ли такие последовательности не представляют никакой ценности. Один ученый задумался: «Геном – это низкопробный роман, в котором можно вырвать сто страниц, и ничего не изменится, или же он больше похож на произведение Хемингуэя, где вся сюжетная линия может потеряться из-за утраты одной страницы?» Однако в ходе исследований мусорной ДНК, в которых применялись теоремы Шеннона, обнаружилось, что их избыточность во многом похожа на избыточность в языке – это может значить, что некодирующая ДНК имеет еще не открытые лингвистические возможности.
Все это поразило бы Шеннона и Фридмана. Но, пожалуй, самое примечательное здесь то, что помимо прочих разумных функций ДНК также подсказала нам идеи, которые помогли изобрести мощнейшие на сегодня инструменты обработки информации. В 1920-х годах выдающийся математик Давид Гильберт пытался определить, существуют ли какие-либо механические процессы или алгоритмы, позволяющие доказывать теоремы автоматически, почти без размышлений. Гильберт при этом представлял людей, включающихся в этот процесс с карандашом и бумагой в руках. Однако в 1936 году математик (и любитель мастерить фигурки из бумаги) Алан Тьюринг набросал эскиз машины, способной выполнять такую работу. Машина Тьюринга выглядела очень просто: всего лишь длинная магнитофонная лента и устройство, проматывающее и маркирующее ленту, – но теоретически могла рассчитать ответ на каждую имеющую решение задачу, независимо от ее сложности, разбивая задачу на мелкие логичные ходы. Машина Тьюринга вдохновила многих мыслителей, в том числе и Клода Шеннона. Вскоре инженеры начали конструировать работающие модели – мы называем их компьютерами – с длинными магнитными лентами и записывающими головками, во многом похожие на модели Тьюринга.