Симпсоны и их математические секреты - стр. 13
За три года до появления шутки с числом π в эпизоде «Человек-пирог» авторы «Симпсонов» уже упоминали это число в серии «Пока, пока, зубрила» (Bye, Bye, Nerdie, сезон 12, эпизод 16; 2001 год). Но на этот раз вместо воскрешения старой шутки сценаристы создали совершенно новую, хотя и основанную на одном любопытном случае из истории числа π. Для того чтобы оценить ее по достоинству, сперва необходимо вспомнить значение числа π и то, как оно измерялось на протяжении столетий.
Я уже говорил, что π = 3,14 – всего лишь приближенное значение. Дело в том, что π – иррациональное число, то есть назвать его абсолютно точное значение невозможно, поскольку в нем бесконечное количество десятичных знаков, в которых отсутствует какая-либо закономерность. Тем не менее математики прошлого ставили перед собой задачу выйти за рамки существующей приближенной оценки 3,14 и поймать это ускользающее число, рассчитав его максимально точное значение.
Первую серьезную попытку это сделать предпринял Архимед в третьем столетии до нашей эры. Он понимал, что точность измерения π зависит от точности измерения длины окружности. Но это весьма сложная задача, так как окружность состоит из кривых малой кривизны, а не из прямых линий. Важным достижением Архимеда стало решение обойти проблему измерения кривых путем аппроксимации окружности прямыми линиями.
Возьмем окружность, диаметр которой (d) равен единице. Мы знаем, что C = πd, а значит, длина окружности (С) равна π. Затем нарисуем два квадрата, один за пределами окружности и один внутри нее.
Безусловно, настоящая окружность должна быть меньше периметра большего квадрата и больше периметра меньшего квадрата. Таким образом, измерив периметры двух квадратов, мы получим верхний и нижний пределы длины окружности.
Периметр большего квадрата измеряется легко, поскольку каждая его сторона имеет ту же длину, что и диаметр круга, который, как нам известно, равен единице. Следовательно, периметр большего квадрата составляет 4 × 1 = 4 единицы.
Периметр меньшего квадрата вычислить несколько труднее, но мы можем определить длину каждой его стороны с помощью теоремы Пифагора. Очень кстати, что диагональ квадрата и две его стороны образуют прямоугольный треугольник, гипотенуза (H) которого не только совпадает с диагональю квадрата, но и имеет ту же длину, что и диаметр окружности, то есть единицу. Теорема Пифагора гласит, что квадрат гипотенузы равен сумме квадратов его катетов. Если мы обозначим их символом S, то H² = S² + S². Если H = 1, то две другие стороны должны иметь длину 1/√2 единиц. Следовательно, периметр меньшего квадрата равен 4 × 1/√2 = 2,83 единицы.