Размер шрифта
-
+

Шри Янтра. Алгоритмы построения - стр. 4


Рис. 4. Центральное ядро Шри Янтры с десятью вершинами треугольников, лежащими на окружности


Рис. 5. Центральное ядро Шри Янтры с шестью вершинами треугольников, лежащими на окружности. Цветовое решение


Здесь и далее, говоря о построении модели Шри Янтры, мы имеем в виду построение её центрального ядра – композиции из девяти равнобедренных треугольников в круге, нарисованных так, что часть вершин (традиционно шесть или десять) лежит на окружности (рис. 4—5), а линии пересечения сторон треугольников проходят строго через одну точку без искажения сторон. Линии треугольников всегда прямые, без изломов и искажений, и степень глубины и точности расчётов определяется заданным уровнем существенности.


Рис. 6. Шри Янтра вписана в правильный 12-угольник и наложена на Куб Метатрона


Обычно построение Шри Янтры является достаточно сложной задачей, если строить её с нуля на чистом листе, глядя на классические образцы и пытаясь уловить или рассчитать пропорции треугольников, чтобы сделать всё точно. Насколько проще решается эта задача при выборе в качестве опорных точек линии или формы Куба Метатрона (рис. 6) и входящих в него тел (рис. 7).


Рис. 7. Модель Шри Янтры, вписанная в 12-угольник и наложенная на Звёздчатый Октаэдр (Меркабу), вписанный в Куб Метатрона (показан синим каркасом). Проекция (вид сверху)


Объём проведённого исследования мандалы Шри Янтра не позволил включить все материалы в монографию автора «МЕТАТРОН», и часть их была использована для подготовки этой книги. Здесь пошагово описаны четыре алгоритма построения различных моделей Шри Янтры с шестью и десятью углами треугольников, лежащими на окружности (схемы мандал см. на рис. 8, слева). Для моделей Шри Янтры с восемью и двенадцатью углами, лежащими на окружности (рис. 8, справа), даны их изображения и размеры, позволяющие построить мандалу самостоятельно, пользуясь предложенными алгоритмами построения.

Это одна из книг серии «АРТ-ПРОЯВЛЕНИЕ», предназначенных для обучения сакральной геометрии всех, кому эта геометрия интересна, без ограничения по возрасту. Так как часть материала не дублируется, рекомендуем прочитать соответствующую главу в монографии «МЕТАТРОН», посвящённую Шри Янтре, вписанной в Куб Метатрона на основе правильного 12-угольника, а также более подробно рассказано о связи Шри Янтры и Куба Метатрона.


Рис. 8. Модели Шри Янтры, классифицированные по количеству вершин треугольников, касающихся окружности: 1 – шесть; 2 – восемь; 3 – десять; 4 – двенадцать


В книге кратко и на наглядных схемах даны базовые алгоритмы построения мандалы Шри Янтры, раскрывающие её разные образы и стороны. Некоторые примеры совсем простые и наглядные на основе правильных многогранников, другие не имеют видимой ассоциации с известными геометрическими фигурами. Все модели понятны интуитивно, не требуют сложных вычислений, для построения достаточно только линейки и циркуля. Для тех, кто любит вычисления и работу с цифрами, склонен к аналитической работе, дана таблица для построения тринадцати мандал серии 10V с десятью вершинами, лежащими на окружности, самых различных пропорций.

Страница 4