Размер шрифта
-
+

Шанс есть! Наука удачи, случайности и вероятности - стр. 21

Для клетки-хозяина дело обстояло иначе. По мере того как съеживался митохондриальный геном, возрастало количество энергии, доступной для каждой копии хозяйского гена, поэтому геном хозяина мог расти. Пользуясь несметным количеством АТФ, организм, обслуживаемый целыми эскадронами митохондрий, мог преспокойно накапливать ДНК и укрупняться. Можно представить себе митохондрии как большой отряд вертолетов, несущих ДНК в ядро клетки. Митохондриальные геномы, освобождаясь от собственной ненужной ДНК, становятся легче и могут нести более тяжелый груз, тем самым позволяя увеличиваться ядерному геному.

Эти огромные геномы послужили генетическим сырьем, которое и привело в ходе эволюции к появлению сложной жизни. Митохондрии не предписывали сложность, но позволили ей возникнуть. Трудно вообразить какой-то иной путь обхода этой энергетической проблемы. И мы знаем, что на Земле такое произошло лишь один-единственный раз, поскольку все эукариоты происходят от одного общего предка.

Итак, толчком к возникновению сложной жизни, похоже, послужило единичное событие-флуктуация – встраивание одной простой клетки в другую. Такие ассоциации, может, и широко распространены среди сложных клеток, но у простых они крайне редки. К тому же положительный результат этого сотрудничества отнюдь не был предопределен. Двум партнерам пришлось пройти через множество стадий нелегкой взаимной адаптации, прежде чем их потомки стали получать удовольствие от сей кооперации.

А стало быть, нет какой-то неизбежной эволюционной траектории, которая вела бы от простой жизни к сложной. Непрестанный естественный отбор, который проходят бесчисленные популяции бактерий на протяжении миллиардов лет, может так никогда и не породить сложность. У бактерий нет нужной для этого архитектуры, вот и все. У них нет энергетических ограничений, пока они остаются небольшими по размерам генома и по объему клетки. Проблема становится очевидной, лишь когда мы пытаемся выяснить, что понадобилось бы для увеличения их объема и размеров их генома. И тогда мы понимаем, что бактерии занимают глубокую расщелину в энергетическом пейзаже, и выбраться из нее они не в силах.

Из этого рассуждения можно заключить следующее: хотя землеподобные планеты могут кишеть живностью, лишь на очень немногих появляются сложные клетки. А значит, вероятность возникновения растений и животных, не говоря уж о разумной жизни, весьма невелика. И если бы мы даже выяснили, что на Марсе появились простые клетки, это мало что сказало бы нам о том, насколько распространена сложная жизнь вне Земли.

Страница 21