Размер шрифта
-
+

Роман с Data Science. Как монетизировать большие данные - стр. 11

Ошибку выжившего допустить очень легко. Чему нас учит пример Вальда? Тому, что нужно думать о всей генеральной совокупности. Ошибка выжившего является одной из форм когнитивных искажений.

В анализе данных ошибка выжившего – это учет известного и пренебрежение неизвестным, но существующим. С этой ошибкой очень легко столкнуться, когда у нас есть какие-то данные, на основе которых нужно сделать вывод. Любые данные – это выборка, ограниченное число. Сама выборка сделана из генеральной совокупности. Если выборка сделана случайно и она достаточно большая, то все хорошо – большая часть закономерностей будет зафиксирована в выборке, и выводы будут объективными. Если же выборка была не случайной, как в нашем случае с самолетами, где в ней отсутствовали сбитые машины, – то, скорее всего, выводы будут ошибочными.

Например, в среднем только 1 из 100 посетителей сайта интернет-магазина совершает покупку. Если мы захотим улучшить свой сайт, чтобы больше покупателей покупали, то с какими посетителями нужно работать? Обычно дизайнеры и продуктологи обращают внимание на существующих покупателей из-за того, что с ними можно пообщаться, есть контактная информация из заказов, по ним есть хорошая статистика. Но эта выборка составляет всего лишь 1 % от всей генеральной совокупности посетителей; с остальными почти невозможно связаться – это «сбитые самолеты». В итоге будет смещение выводов в сторону «выживших», а значит, выводы анализа не будут работать для всех посетителей.

Еще одно когнитивное искажение – предвзятость результата (outcome bias). Представьте себе – вам предлагают два варианта на выбор:

• Сыграть в «Орла или решку» – если выпадет орел, получите 10 000 рублей.

• Сыграть игральной костью с шестью гранями – если выпадет 6, получите 10 000 рублей.

Какой вариант выберете? Естественно первый, в котором шанс выиграть 1 к 2, во втором варианте значительно хуже – 1 к 6. Монету подбросили – выпала решка, вы ничего не получили. Тут же бросили кость, выпала шестерка. Будет ли обидно? Да, будет. Но было ли наше решение правильным?

Этот пример я взял из поста «Фокусируйтесь на решениях, а не на результате» [5] Кэсси Козырьков (Cassie Kozyrkov), которая работает директором по принятию решений [4] (Decision Intelligence) в Google. Она советует всегда оценивать верность решения, учитывая, какой именно информацией вы обладали в момент его принятия. Многие люди жалеют, что они не уволились с работы раньше и только потеряли время, откладывая это решение, – я и сам в свое время так думал. И это отличный пример предвзятости результата – мы понимаем, что нужно было уволиться раньше, только обладая той информацией, которая у нас есть на данный момент. Например, что с тех пор зарплата так и не выросла, а интересный проект, который мы предвкушали, так и не был запущен. Оценивая последствия своего решения (особенно неудачного), в приступе самокопания мы не должны забывать, что принимали решение в условиях неопределенности.

Страница 11