Роботы наступают: Развитие технологий и будущее без работы - стр. 5
Я также писал о прогрессе в области искусственного интеллекта. В то время, пожалуй, самым впечатляющим примером превосходства искусственного интеллекта была история победы созданного IBM суперкомпьютера Deep Blue над чемпионом мира по шахматам Гарри Каспаровым в 1997 г. Но и на этот раз реальность превзошла все мои ожидания, когда IBM представила потомка Deep Blue – суперкомпьютер Watson, который взялся за куда более трудную задачу – телевизионную игру-викторину «Jeopardy!»[3]. В шахматах игроки подчиняются жестко заданным правилам, т. е. делают то, что, как мы думаем, должно лучше всего получаться у компьютера. В «Jeopardy!» все совершенно иначе: это игра, в которой задействуется практически неограниченный массив знаний и которая требует сложных навыков понимания языка, включая даже шутки и игру слов. Успех Watson в «Jeopardy!» не только поражает воображение, но и имеет большое значение с практической точки зрения: фактически IBM уже отводит компьютеру важную роль в таких областях, как медицина и обслуживание клиентов.
Готов поручиться, что в ближайшие годы и десятилетия почти всем нам предстоит столкнуться с поражающими воображение проявлениями прогресса. И речь не только о технических новинках как таковых: влияние набирающего обороты прогресса на рынок труда и на экономику в целом вот-вот перерастет в нечто такое, что не укладывается в общепринятые представления о взаимодействии технологий и экономических процессов.
Одно из мнений, которое наверняка подвергнется пересмотру, это мнение о том, что автоматизация главным образом угрожает малоквалифицированным работникам с низким уровнем образования. Это допущение исходит из убеждения, что такая работа обычно носит рутинный характер. Однако вместо того, чтобы успокаивать себя этой мыслью, задумайтесь, насколько быстро расширяются пределы понятия «рутина». Когда-то «рутинной» называли работу на конвейере. В наше время это уже далеко не так. Разумеется, профессии, не требующие особой квалификации, по-прежнему относятся к «рутинным», но при этом, учитывая, как быстро растут возможности ПО для автоматизации и алгоритмов прогнозирования, огромному количеству белых воротничков с высшим образованием предстоит столкнуться с той же проблемой.
На самом деле прилагательное «рутинный» не совсем подходит для описания профессий, являющихся наиболее вероятной жертвой новых технологий. Более точным представляется другое прилагательное – «предсказуемый». Может ли другой человек научиться тому, что вы делаете в рамках своих должностных обязанностей, подробно изучив описание ваших действий? Можно ли освоить ваше ремесло, повторяя за вами те задачи, работу над которыми вы уже завершили, подобно тому, как при подготовке к экзамену учащийся выполняет практические задания? Если это так, то вполне вероятно, что однажды появится алгоритм, который сможет научиться делать всю работу – или значительную ее часть – за вас. Причем вероятность именно такого развития событий многократно увеличивается по мере все более глубокого проникновения в нашу жизнь такого феномена, как «большие данные»: организации собирают невообразимое количество информации практически обо всех аспектах своей деятельности, и с большой долей вероятности можно утверждать, что эти данные включают подробные сведения об огромном количестве профессиональных навыков и операций. Так что остается лишь дождаться дня, когда появится изощренный алгоритм машинного обучения, который, углубившись в оставленные предшественниками-людьми цифровые следы, сам всему научится.