Размер шрифта
-
+

Ритм Вселенной. Как из хаоса возникает порядок - стр. 57

За свою жизнь Ландау совершил немало открытий. В частности, в конце 1940-х годов он предсказал необычные свойства плазмы. Плазму иногда называют четвертым состоянием материи, возникающим при очень высоких температурах, намного превышающих температуры, при которых материя пребывает в твердом, жидком и газообразном состояниях. Такие температуры действуют на Солнце, а также в реакторах термоядерного синтеза, где обычные атомы превращаются в ионизированный газ, состоящий из примерно равных количеств электронов и положительно заряженных ионов. Парадоксальное явление, которое в настоящее время носит имя Ландау, происходит, когда электростатические волны проходят через высоко разреженную плазму. Ландау показал, что эти волны могут затухать даже в отсутствие столкновений между частицами в плазме, а также в отсутствие какого-либо трения или рассеяния. Джордж Роуландз понял, что демпфирование Ландау описывается, по сути, тем же математическим механизмом, что и сползание в некогерентность в модели Курамото: электроны, содержащиеся в плазме, играют роль осцилляторов, а величина колебаний в генерируемом ими электрическом поле играет роль параметра порядка.

На первый взгляд кажется удивительным, что между неистовым миром сверхгорячей плазмы на Солнце, где атомы регулярно теряют свои электроны, и спокойным миром биологических осцилляторов, в котором светлячки тихо мерцают, расположившись на берегах реки, может существовать какая-то связь. Действующие лица разные, но абстрактные картины взаимодействия между ними, по сути, одинаковы. Когда эта связь была выявлена, нам удалось перенести методы Ландау на модель Курамото, раскрыв таким образом тайну, которая многие годы не давала покоя ученым. Биологии также удалось внести вклад в развитие физики. Джон Дэвид Кроуфорд, физик из Питтсбургского университета, смог применить результаты, полученные при исследовании биологического синхронизма, для решения давней проблемы, касающейся поведения плазмы[49].


Теории взаимной синхронизации биологических осцилляторов оказались правильными с математической точки зрения. Они пролили свет на один из самых фундаментальных механизмов самоорганизации. Однако предстояло ответить на более сложный вопрос: насколько точно эти модели описывают реальность. Позволяют ли они предсказывать явления, которые согласуются с данными, описывающими реальных светлячков, клетки сердца или нейроны[50]?

Этого мы не знаем. До настоящего времени никакие тесты в этом отношении не проводились. Соответствующие эксперименты выполнить было бы очень непросто, поскольку они требуют измерений на уровне отдельно взятых животных или клеток, в частности измерений их естественных частот и их реакций на внешние воздействия разной силы и в определенные моменты времени, а также на уровне сети в целом, чтобы количественно оценить взаимодействия между осцилляторами и результирующее коллективное поведение. Особенно трудно измерить взаимодействия между парами осцилляторов. Если эти пары осцилляторов оставить в сети, то на результатах наших измерений может сказаться влияние со стороны других осцилляторов; если же эти пары осцилляторов изъять из сети, хирургическим или иным способом, то в процессе такого изъятия могут пострадать окружающие осцилляторы и соединения между ними. Кроме того, соединения внутри сетей, как правило, остаются неизвестными за исключением нескольких малых систем нейронов. Не зная, кто с кем взаимодействует, невозможно выполнить количественное тестирование моделей. Например, если на дереве расположилось множество светлячков, то вам пришлось бы точно определить, какие из них кого видят, измерить естественные частоты мерцания каждого из них и, наконец, измерить функции чувствительности и влияния каждого насекомого. Никто не пытался выполнить такой эксперимент даже для двух светлячков, не говоря уж о том, чтобы выполнить его для большой совокупности светлячков.

Страница 57