Ритм Вселенной. Как из хаоса возникает порядок - стр. 4
С тех пор прошло тридцать лет, но я по-прежнему очарован математической природой окружающего нас мира и особенно циклическими процессами, происходящими в нем (например, периодическими колебаниями маятника). Однако меня занимает изучение не столько какого-либо отдельно взятого колебательного процесса, сколько большой совокупности колебательных процессов, происходящих одновременно, то есть изучение упоминавшихся выше связанных осцилляторов. Со временем мне удалось разработать достаточно простые модели, которые, тем не менее, можно использовать для описания очень сложных совокупностей объектов. Разработанные мною идеализированные системы уравнений с достаточной степенью точности моделируют групповое поведение светлячков или сверхпроводников. Я пытаюсь использовать вычислительные методы и компьютеры, чтобы понять, как из хаоса рождается порядок. Эти загадки особенно интересны для меня тем, что являются, образно говоря, передним краем математики. Два связанных осциллятора не представляют собой проблемы: их поведение было изучено еще в начале 1950-х годов. Но когда речь идет о сотнях и тысячах связанных осцилляторов, наука по-прежнему бессильна. Нелинейная динамика систем со столь большим количеством переменных все еще недосягаема для нас. Даже наличие суперкомпьютеров не помогает нам описать коллективное поведение гигантских систем осцилляторов.
И все же благодаря объединенным усилиям математиков и физиков всего мира за последнее десятилетие нам удалось описать один специальный случай связанных осцилляторов, что открыло путь к более глубокому пониманию феномена синхронизма. Если предположить, что все осцилляторы в данной группе почти идентичны и что они в одинаковой степени связаны между собой, то их динамика поддается математической трактовке. В частях I и II этой книги я рассказываю о том, как моим коллегам и мне удалось решить этот класс теоретических проблем и что означает их решение для синхронизма в реальном мире: в части I – для осцилляторов живой природы (биологические клетки, животные и люди), а затем, в части II, – для осцилляторов неживой природы (маятники, планеты, лазеры и электроны). В части III рассказывается о передних рубежах синхронизма, когда мы отказываемся от использования упрощающих предположений, выдвинутых нами ранее. Эта сфера остается в значительной мере неисследованной и включает ситуации, где место осцилляторов занимают хаотические системы или где они связаны менее симметричными способами со своими соседями в трехмерном пространстве или в сложных сетях, охватывающих огромные территории.