Размер шрифта
-
+

Ритм Вселенной. Как из хаоса возникает порядок - стр. 22

осцилляторов требуется (n–1) – мерный гиберкуб. Людям, далеким от математики, это может показаться чересчур сложным (все это действительно сложно представить себе). Но с точки зрения формального математического подхода, вообще говоря, все равно, какому числу в каждом конкретном случае соответствует n: увеличение n не предполагает возникновения каких-либо новых сложностей. Поэтому, для большей определенности, в дальнейшем я продолжу рассматривать случай с тремя осцилляторами, который заключает в себе все основные идеи.


Очередной шаг заключается в преобразовании рассматриваемой нами динамики – эволюции такой системы во времени – в графическое представление, которое мы стремимся получить. Мы хотим убедиться в том, что в такой системе действительно будет достигнут синхронизм при неких начальных состояниях осцилляторов B и C.

Представим, что произойдет, если мы позволим такой системе начать работать. Напряжение на всех осцилляторах поднимется до порогового значения, они запустятся, а затем вернутся в исходное (нулевое) состояние; они также будут реагировать на «толчки» со стороны других осцилляторов. Чтобы устранить избыточную информацию, опять воспользуемся методом стробов: предоставим системе возможность работать в темноте до очередного момента, когда осциллятор A запустится и вернется в исходное состояние, а B и C отреагируют на это. Затем включим строб и сделаем очередной фотоснимок, зафиксировав новые позиции B и C.

Геометрический результат заключается в том, что старая точка в нашем квадрате оказалась на новом месте (обновленные напряжения B и C). Иными словами, динамическая эволюция нашей системы эквивалентна преобразованию, в результате которого любая данная точка в нашем квадрате оказывается в другом месте этого квадрата в соответствии с неким сложным правилом, которое определяется формой кривой заряда и величиной толчков.

Этот процесс можно повторить; при этом новую точку можно интерпретировать как начальную, которая изменяет свою позицию в соответствии с упомянутым преобразованием, снова и снова перепрыгивая с одного места в нашем квадрате на другое место. Если такая система должна в конечном счете прийти к синхронизму, то упомянутая нами точка должна постепенно продвигаться в сторону нижнего левого угла квадрата, то есть к точке с напряжениями (0,0); это означает, что все осцилляторы достигнут исходного положения одновременно. (Почему именно нижний левый угол? Потому что именно в этой точке находится осциллятор A. Согласно определению строба, осциллятор A уже запустился и сбросился, поэтому напряжение на нем равно нулю. В синхронизированном состоянии напряжение на обоих других осцилляторах также равно нулю.)

Страница 22