Распространненость жизни и уникальность разума? - стр. 34
Большой размер раннего кодона мог также в отсутствие специального механизма обеспечивать соблюдение рамки считывания. При трехбуквенном коде все возможные 64 триплета задействованы, т. е. за исключением трех стоп-кодонов они могут быть узнаны соответствующими тРНК. Поэтому смещение рамки считывания в мРНК, кодирующей определенный пептид, на одну или две буквы не прерывало бы синтеза, но изменило бы последовательность кодонов, т. е. привело бы к появлению “неправильного” пептида. При современном синтезе белка на рибосомах осуществляется контроль начала считывания со стартового кодона, определяющего N-концевую аминокислоту и одновременно обозначающего начало рамки считывания. Однако трудно рассчитывать на то, что контроль соблюдения рамки считывания уже осуществлялся в ранних версиях современного способа кодирования. Роль контролирующего фактора в соблюдении рамки считывания могли сыграть большие размеры кодона. При семибуквенном коде и четырех узнаваемых элементах (азотистых основаниях) число возможных вариантов кодонов около 16 000. Очевидно, что число функционировавших РНК-адапторов и, соответственно, “осмысленных” (соответствовавших определенным аминокислотам) кодонов было многократно ниже. Абсолютное большинство потенциальных кодонов не имело адапторов. Поэтому вопрос об использовании “неправильной” рамки считывания вообще не стоял: существовала единственная рамка, обеспеченная адапторами на всем протяжении. В ней осуществлялся синтез запрограммированного пептида.
Впоследствии, когда сформировался действующий поныне аппарат синтеза белков (Рис. 1В), включающий рибосому, которая наряду с другими функциями осуществляет узнавание стартового кодона в мРНК, контролирует последовательное подключение “заряженных” аминокислотами тРНК и стабилизирует кодон-антикодонное взаимодействие до момента формирования пептидной связи, размер кодона был редуцирован до необходимого минимума – триплета. Возможный ход эволюции генетического кода рассматривался ранее (Fitch and Upper, 1987).
3.3. Трансформация мира РНК в мир РНК-ДНК
Новый скачок в эволюции клетки связан с появлением ДНК и переходом к ней функций основного носителя генетической информации. Эволюционно этот переход был обусловлен меньшей склонностью ДНК к гидролизу (Бреслер, 1963) и, соответственно, более высокой прочностью полинуклеотидной цепи. Последнее обстоятельство позволяет ДНК формировать значительно более длинные молекулы, чем это возможно у РНК. В современной клетке только ДНК является автореплицирующейся молекулой и присутствует в форме двунитевой молекулы (биспирали). Все клеточные РНК синтезируются в форме однонитевых молекул путем комплементарного копирования “смысловой” нити двунитевой ДНК-матрицы.