Размер шрифта
-
+

Распространненость жизни и уникальность разума? - стр. 23

В последние годы как модели ранней (неферментной) авторепликации нуклеиновых кислот рассматриваются различные матричные конструкции, химические катализаторы и т. д. В экспериментах по неферментной авторепликации нуклеиновых кислот, как и в биологических системах, используется принцип комплементарности. Экспериментально было установлено, что короткие фрагменты однонитевой ДНК могут ассоциировать с соответствующими им (гомологичными) участками биспиральной ДНК. В образовавшейся прерывной тройной спирали примыкающие друг к другу фрагменты могут быть воссоединены (легированы) с помощью N-цианимидазола. Аналогичным образом могут быть воссоединены фрагменты, находящиеся в составе прерывной биспирали (Li and Nicolaou, 1994; Sievers and von Kiedrovski, 1994; Luther et al., 1998). Отметим, однако, что от воссоединения фрагментов до реального синтеза комплементарной нити ДНК или другой автореплицирующейся молекулы из мономерных предшественников еще далеко. Тем не менее, механизм формирования протяженных цепных молекул путем скрепления коротких фрагментов мог быть полезным в добиологические времена и в ранних клетках при условии осуществления химического синтеза коротких фрагментов из мономеров (Sievers and von Kiedrovski, 1994; Luther et al., 2001). Сшивка фрагментов на матрицах позволяла ступенчато наращивать длину цепных молекул до размеров, позволявших молекулам выполнять их функции (в данном случае, информационные). Фактически, этот процесс можно рассматривать как самую раннюю и, естественно, примитивную форму генетической рекомбинации (Lehman, 2003). Механизм ступенчатого наращивания пептида путем соединения коротких цепочек на белковой же матрице также мог иметь место (Lee et al., 1996; Yao et al., 1998; Paul and Joyce, 2004). Образование примитивных клеток сделало автореплицирующиеся молекулы, а следовательно, и заключавшие их клетки предметами Дарвиновского отбора.

Идея о возможности неферментной авторепликации нуклеиновых кислот привела некоторых авторов к выводу о вторичности белков. Высказано предположение, что в РНК мире белков еще не было. Однако учитывая, что белки, как и нуклеиновые кислоты (скорее, аналоги нуклеиновых кислот), могли быть образованы в ходе химической эволюции, их участие в предбиологических и раннебиологических синтетических процессах представляется весьма вероятным.

Следует коснуться часто поднимаемого вопроса, каким образом и в какой степени в добиологические и раннебиологические времена при синтезе “биологических” полимеров, в первую очередь белков и нуклеиновых кислот, выполнялось правило единообразия оптических изомеров. Аминокислоты, составляющие белки, как и сахара, составляющие основу нуклеиновых кислот, обладают асимметрическим атомом углерода (все замещающие группы у этого атома разные), благодаря чему являются оптически активными (хиральными) веществами. Каждое из них присутствует в форме двух конформационных d– и l-изомеров (энантиомеров), вращающих плоскость поляризации света, соответственно, вправо и влево. Такие изомеры, будучи химически идентичны, не могут быть совмещены друг с другом подобно кистям правой и левой руки. Очевидно, что d– или l-изомеры не взаимозаменяемы в биологических полимерных молекулах (в том числе уже на этапе их синтеза), т. к. осуществление фермент-субстратной реакции и других форм межмолекулярных взаимодействий, требует точного соответствия позиций участвующих во взаимодействии групп. В клетке эта проблема решается, как правило, определенным образом: соответствующие ферментные системы синтезируют только l-изомеры (аминокислоты) или d-изомеры (сахар рибоза). Оговорка “как правило” не случайна, т. к. существуют и исключения. Известны не частые случаи, когда в определенной позиции пептида (например синтезируемого цианобактериями токсина) присутствует не l-, а d-изомер, синтез которого контролируют соответствующие ферментные системы. Такой пептид не кодируется непосредственно генетическим аппаратом клетки, и, соответственно, его синтез не осуществляется на рибосомах. В этих случаях кодируются образованные l-аминокислотами ферменты, которые обеспечивают синтез пептида с включенными в определенных позициях d-аминокислотами.

Страница 23