Размер шрифта
-
+

Путеводитель по лжи - стр. 16

Будьте осторожны со средними, а также с тем, как их интерпретируют. Один из способов ввести в заблуждение, используя средние, – усреднять данные по выборкам из несопоставимых совокупностей. Этот способ может привести к абсурдным выводам, как то:

В среднем у каждого человека одно яичко[20].

Этот пример наглядно показывает разницу между средним арифметическим, медианой и модой. Так как женщин в мире несколько больше, чем мужчин, медиана и мода будут равны нулю, в то время как среднее арифметическое будет близко к единице (возможно, оно будет равно 0,98 или около того).

Кроме этого, нужно быть внимательным и помнить, что среднее ничего не говорит о размахе значений. Средняя годовая температура в Долине Смерти в Калифорнии равна 25 °C, что считается комфортным. Но размах может быть просто убийственным, с колебанием температуры от – 9 до 57 °C, – факт, зафиксированный приборами[21].

Или… Я мог бы вам сказать, что в среднем благосостояние сотни людей, находящихся в комнате, составляет колоссальную сумму: 350 миллионов долларов. Вы, наверное, думаете: вот бы отправить туда моих лучших менеджеров по продажам. Но в комнате могут находиться Марк Цукерберг (его состояние оценивается в 25 миллиардов долларов[22]) и 99 бедняков. Таким образом, средний показатель может размыть разницу в важных показателях.

Если вы работаете со средними, остерегайтесь еще бимодального распределения. Вспомните, мода – это то значение, которое встречается чаще всего. Во многих наборах данных – биологических, физических, социальных – у распределения может быть два или больше пиков. А это значит, что два или больше показателей встречаются чаще других.



Например, подобный график может отображать сумму, потраченную на обеды в неделю (ось X), и количество людей, потративших такую сумму (ось Y)[23]. Представьте, что вы изучали две группы людей: детей (левый горб) – они покупают школьные обеды – и руководителей компаний (правый горб) – они ходят в дорогие рестораны. Среднее арифметическое и медиана в данном случае – это числа где-то между этими двумя горбами, и они ничего не скажут нам о том, что происходит на самом деле, – ведь во многих случаях среднее арифметическое и медиана отражают ту сумму, которую никто не тратит. Подобный график говорит лишь о том, что в вашем примере имеет место неоднородность – вы сравниваете яблоки с апельсинами. В таком случае лучше сразу сказать, что вы имеете дело с бимодальным распределением, и сообщить о двух модах. А еще лучше разделить группу на две подгруппы и собрать статистические данные для каждой.

Страница 16