Размер шрифта
-
+

Происхождение Вселенной. Как с помощью теории относительности Эйнштейна можно проникнуть в прошлое, понять настоящее и предвидеть будущее Вселенной - стр. 13

Давайте пока забудем о времени и поговорим о пространстве. Предположим, что на столике в купе поезда лежит длинная палка. Наблюдатель Алан может измерить длину палки, сосчитав, сколько «тиков» сделают часы на платформе, пока палка проезжает мимо определенной точки на платформе. Но для наблюдателя Боба часы Алана идут медленнее, поэтому в сравнении с его измерениями длина, измеренная Аланом, окажется меньше на тот же самый фактор 1/(1–√v>2/c>2).

Сжатие Лоренца – Фицджеральда также применимо и к поезду, и к самому Бобу. Все сжимается в направлении движения поезда. Конечно, при скоростях, гораздо меньших скорости света, этот фактор очень мал: даже для сверхзвукового реактивного самолета при числе Маха, равном 2, т. е. при скорости, в 2 раза превышающей скорость звука на уровне моря, сжатие составляет всего лишь две части на один триллион. Чем быстрее объект движется относительно наблюдателя, тем более он укорачивается, и его часы «тикают» все медленнее. При скорости света длина объекта в направлении движения становится равной нулю, а время для него останавливается.

Так как длина и время зависят от нашей системы отсчета, скорости не будут складываться привычным для нас образом. Пусть скорость поезда, на котором едет Боб, равна v>1; Боб стреляет, и пуля летит вперед со скоростью v>2, измеренной в поезде. Стоящий на платформе Алан увидит, что пуля летит не со скоростью v>1 + v>2, а более медленно. Скорость, которую он наблюдает, равна (v>1 + v>2):(1 + (v>1v>2): c>2).

Это означает, что никакой инерциальный наблюдатель (движущийся с постоянной скоростью) не сможет увидеть, что пуля или любой другой объект движется быстрее скорости света. Например, если поезд и пуля движутся со скоростью 0,75 с, Алан увидит пулю, летящую со скоростью 0,96 с, а вовсе не 1,5 с.

Но что же происходит с энергией пули? Энергия должна сохраняться как для Боба, так и для Алана. Ружье сообщает пуле некую энергию, но с точки зрения Алана скорость пули возрастает недостаточно – количество затраченной энергии больше. Кинетическая энергия равна 1/2 mv>2 (где m – это масса); поэтому, если скорость не выросла в достаточной мере, то должна увеличиться масса.

Таким образом, масса движущегося тела больше массы того же тела в состоянии покоя. По расчетам Эйнштейна, масса движущегося тела равна массе этого тела в покое, умноженной на знакомый уже нам фактор Лоренца.

Чудесный год

Год 1905 был для Эйнштейна annus mirabilis (годом чудесным), когда он, щеголеватый 26-летний молодой человек, напечатал четыре статьи, изменившие мир. 9 июня он опубликовал работу по фотоэлектрическому эффекту, сделав большой рывок в области квантовой физики. Он показал, что энергия распространяется в виде дискретных пакетов. Именно эта работа, а не теория относительности, принесла ему Нобелевскую премию. Через месяц вышла еще одна работа о теории броуновского движения – беспорядочного движения частиц в жидкостях и газах. 26 сентября была опубликована его работа по специальной теории относительности, а 21 ноября Эйнштейн сформулировал самое известное в мире уравнение:

Страница 13