Правовое регулирования искусственного интеллекта, роботов и объектов робототехники как условие формирования экономического лидерства в России - стр. 17
Опасность представляет не только возможность использования технологий ИИ злоумышленниками, но и вполне благовидное использование программного обеспечения с поддержкой ИИ. По мнению Алекса Смита, директора по решениям в области информационной безопасности компании Intermedia, в результате распространения продуктов, использующих ИИ, компании столкнутся с ростом числа случайных уязвимостей и нарушений информационных безопасности, не связанных с действиями хакеров. В частности, эксперт отмечает, что без защиты могут остаться наборы данных, на основе которых обучался ИИ. Разглашение такой информации может иметь негативные последствия, как для имиджа компании, так и для тех, чьи сведения содержатся в такой выборке (особенно, если выборки составлены на основе данных из социальных сетей).
Кроме того, программные решения, основанные на технологиях ИИ, имеют свои слабые места и уязвимости. Например, исследователи отмечают следующие наиболее высокие риски по отношению к подобным программным решениям в результате эксплуатации тех или иных уязвимостей в алгоритме искусственного интеллекта [60]:
1. Риск атаки путём представления специально сформированных входных данных, чтобы исказить работу алгоритма искусственного интеллекта. Суть данной атаки заключается в том, что атакующий, вычисляя ошибки на выходе алгоритма по отношению к входным данным, может таким образом сформировать входные данные, чтобы на выходе получить интересующий его результат. Например, сформировав определённым образом код вредоносного программного обеспечения, атакующий может добиться того, чтобы проверяющий этот код искусственный интеллект счёл его заслуживающим доверия. Данная атака возможна в силу того, что выборка данных, на основании которых алгоритм проходил обучение, не всеобъемлюща. При получении входных данных, которые не содержались в обучающей выборке, алгоритм может выдать случайный результат.
2. Риск нарушения конфиденциальности обучающих данных. Атакующий, наблюдая, как алгоритм реагирует на те или иные входные данные, может вычислить те данные, на основании которых алгоритм обучался.