Политическая наука №2 / 2015. Познавательные возможности политической науки - стр. 51
Deckert J. Benford’s law and the detection of election fraud. / J. Deckert, M. Myagkov, P.C. Ordeshook // Political analysis. – 2011. – Vol. 19. – P. 245–268.
Diekmann A. Benford's law and fraud detection: facts and legends. / A. Diekmann, J. Ben // German economic review. – 2010. – № 11 (3). – P. 397–401.
Duijn M.A.J., Vermunt J.K. What is special about social network analysis? // Methodology. – 2006. – Vol. 2. – P. 2–6.
Election fraud: Detecting and deterring electoral manipulation / Ed. Alvarez, Michael R., Hall, Thad E., Hyde, Susan D. – Washington, DC: Brookings institut. press – 2008. – 255 p.
Elff M. A Dynamic state-space model of coded political texts // Political analysis. – 2013. – Vol. 21, N 2. – P. 217–232.
Estok M., Nevitte N., Cowan G. The quick count and election observation / National democratic institute for international affairs. – Washington, DC, 2002. – 182 p.
Fewster R.M. A Simple explanation of Benford’s law // The American statistician. – 2009. – February. – Vol. 63, N 1. – P. 26–32.
Grimmer J., Stewart B.M. Text as data: The promise and pitfalls of automatic content analysis methods for political texts // Political analysis. – 2013. – Vol. 21, N 2. – P. 267–297.
Implementing risk-limiting post-election audits in California / Hall J.L., Miratrix L.W., Stark P.B. et al. // 2009 Electronic voting technology. Workshop on Trustworthy Elections (EVT/WOTE '09). – Montreal, 2009. – 24 p.
Hug S. Qualitative comparative analysis: How inductive use and measurement error lead to problematic inference // Political analysis. – 2013. – Vol. 21, N 2. – P. 252–265.
Statistical detection of systematic election irregularities. / Klimek P., Yegorov Yu. et al. // PNAS. – 2012. – Vol. 109 (41). – P. 16469–16473.
Kobak D., Shpilkin S., Pshenichnikov M.S. Statistical anomalies in 2011–2012 Russian elections revealed by 2 D correlation analysis. – 2012. – Mode of access: http://arxiv.org/abs/1205.0741 (Дата посещения: 15.04.2013.)
Krogslund Ch., Choi D.D., Poertner M. Fuzzy sets on shaky ground: Parameter sensitivity and confirmation bias in fsQCA // Political analysis. – 2015. – Vol. 23, N 1. – P. 21–41.
König T., Marbach M., Osnabrügge M. Estimating party positions across countries and time – A dynamic latent variable model for manifesto data // Political analysis. – 2013. – Vol. 21, N 4. – P. 468–491.
Leemann L., Bochsler. D. A systematic approach to study electoral fraud // Electoral studies. – 2014. – Vol. 35. – P. 33–47.
Lehoucq F. Electoral fraud: Causes, types and consequences // Annual Review political sciences. – 2003. – Vol. 6. – P. 233–256.