Полевое руководство для научных журналистов - стр. 19
2. Что насчет цифр? Было ли исследование достаточно масштабным (включало ли достаточно много пациентов, экспериментов и т. д.), чтобы сделать убедительные выводы? Являются ли статистически значимыми его результаты? Эта фраза означает всего-навсего, что, согласно научным стандартам, маловероятно, что такие статистические результаты получились просто случайно.
3. Есть ли другие возможные объяснения выводов исследования?
4. Могли ли повлиять на выводы исследования какие-либо искажения, преднамеренные или нет?
5. Проверялись ли результаты другими экспертами? И как они соотносятся с другой научной информацией и представлениями?
Принципы проверки исследований
Чтобы получить ответы на эти вопросы, следует знать пять принципов научного анализа.
Эксперты постоянно меняют взгляды не только на то, что нужно есть, чтобы оставаться здоровым, но и на то, что нужно делать, если человек заболел. Все больше лекарственных препаратов и методов лечения оказываются дискредитированными после того, как новые исследования поднимают вопросы об их эффективности или безопасности. Даже форма Вселенной (точнее, форма Вселенной, по мнению ученых) меняется от статьи к статье.
Некоторые считают, что такие резкие перемены позорят науку. Но это просто часть нормального научного процесса, идущего как и положено.
Наука изучает статистическую вероятность истины. Выводы делаются на основе убедительных свидетельств, никто не дожидается недостижимых неопровержимых доказательств. Сложности окружающего мира и научного процесса только усиливают неопределенность.
Однако наука может двигаться вперед именно потому, что это всегда развивающаяся история, продолжающийся путь, в котором возможны корректировки. Везде – от медицины до астрономии, от геологии до психологии – прежние выводы постоянно перепроверяются и, если нужно, уточняются (а иногда и отбрасываются в сторону).
Необходимо объяснить это редакторам и начальству, а также читателям и зрителям. Некоторая неопределенность не должна мешать важным действиям, если общество понимает, почему в лучшем случае ученый может сказать так: «Вот убедительные свидетельства в пользу того, что это, скорее всего, правда. Пожалуйста, оставайтесь с нами, пока мы пытаемся узнать больше».
Теперь, когда мы переходим к деталям, помните, что не все исследования равнозначны.
Вы слышали о новом лекарстве, прошедшем испытание на мышах? 33 % удалось вылечить, 33 % умерло, а третья мышь убежала. Эта старая шутка показывает, насколько важны численные показатели в оценке качества исследования.