О том, чего мы не можем знать. Путешествие к рубежам знаний - стр. 57
Из теоремы Пифагора о прямоугольном треугольнике следует, что длина гипотенузы равна произведению длины катета на квадратный корень из 2. Но Гиппас смог доказать, что дроби, квадрат которой был бы точно равен 2, не существует. Доказательство использует один из классических приемов, имеющихся в арсенале математика, – доказательство от противного. Гиппас предположил сначала, что существует такая дробь, квадрат которой равен 2. При помощи некоторых ловких преобразований можно показать, что из этой посылки всегда следует противоречивый вывод о существовании числа одновременно четного и нечетного. Единственный способ разрешения этого противоречия состоит в признании ложности исходного предположения: существование дроби, квадрат которой был бы равен 2, невозможно.
Говорят, что его товарищи-пифагорейцы были приведены в смятение вестью о том, что их прекрасные прямоугольные треугольники могут порождать такие негармоничные длины. Члены секты поклялись молчать об этом, но, когда Гиппас обнародовал свои результаты, его, как рассказывают, утопили в море за разглашение факта существования в физическом мире подобной дисгармонии. Однако заткнуть рот этим новым числам, называемым иррациональными, поскольку они не являются отношениями целых чисел[34], было сложнее.
Иррациональные длины в кубе
Мне конечно же кажется, что такая длина существует. Я могу увидеть ее на линейке, приложенной к длинной стороне треугольника. Она равна расстоянию между двумя противоположными углами любой грани моей кости. И тем не менее, сколько бы я ни пытался, я не могу найти закономерность этого бесконечного десятичного числа. Оно начинается с 1,414213562… и продолжается до бесконечности, никогда не повторяясь.
Иррациональный восторг
Открытое древними греками существование длин, которые нельзя выразить простым отношением целых чисел, заставило математиков того времени создать новую математику, математику иррациональных чисел, которая позволила бы действительно измерить Вселенную. Иррациональными оказались и другие базовые длины, например π, длина окружности единичного диаметра, – они тоже не были равны отношениям целых чисел. Хотя иррациональность квадратного корня из 2 была известна древним грекам еще 2000 лет назад, только в XVIII в. швейцарский математик Иоганн Генрих Ламберт смог доказать, что число π тоже не может быть выражено в виде отношения двух целых чисел.
Несмотря на мое отвращение к тому, чего мы знать не можем, один из определяющих моментов, возбудивших во мне любовь к математике, наступил, когда я прочитал о числах, которые не могут быть выражены простым отношением целых чисел. В том же году, когда учитель музыки познакомил меня с трубой, лежавшей в шкафу, учитель математики познакомил меня с доказательством иррациональности квадратного корня из 2. Это доказательство содержалось в одной из книг, которые учитель посоветовал мне прочесть, пытаясь разжечь во мне математическое пламя. И это ему удалось. Я был поражен тем, что при помощи конечного логического рассуждения можно доказать, что размер, подобный длине диагонали квадрата, может быть выражен лишь числом с бесконечным количеством знаков. А если записать такую длину невозможно, мне нужно хотя бы понять, почему это число нельзя познать.