О том, чего мы не можем знать. Путешествие к рубежам знаний - стр. 45
Например, размеры эллиптической орбиты Меркурия известны астрономам с точностью до нескольких метров. Ласкар и Гастино обсчитали 2501 модель, изменяя эти размеры в диапазоне величиной менее сантиметра. Даже такие малые возмущения привели к потрясающим различиям в будущей судьбе Солнечной системы.
Можно было бы ожидать, что, если уж Солнечная система и будет разорвана на части, виновником этого окажется одна из больших планет, скажем Юпитер или Сатурн. Однако орбиты газовых гигантов чрезвычайно стабильны. Неприятностей следует ожидать от скалистых планет земного типа. В 1 % проведенных ими имитационных экспериментов наибольшая опасность была связана именно с маленьким Меркурием. Модели показывают, что орбита Меркурия может начать расширяться в результате некоего резонанса с Юпитером, причем существует возможность столкновения Меркурия с его ближайшим соседом, Венерой. В одной из имитаций чуть было не случившегося столкновения оказалось достаточно, чтобы вывести Венеру из равновесия, в результате чего Венера столкнулась с Землей. Даже прохождение вблизи других планет может привести к возникновению таких приливных сил, воздействие которых будет катастрофично для жизни на нашей планете.
Речь тут не идет о простом случае абстрактных математических рассуждений. Свидетельства таких столкновений наблюдались на планетах, обращающихся вокруг двойной звезды Ипсилон Андромеды. Странность их нынешних орбит можно объяснить только выбросом какой-то невезучей планеты, произошедшим когда-то в прошлом этой звезды. Но не спешите убегать и прятаться: согласно этим моделям, момент, в который Меркурий может начать свои шалости, наступит еще через несколько миллиардов лет.
Бесконечная сложность
Каковы же наши шансы предсказать результаты броска кости, лежащей передо мной? Лаплас сказал бы, что если мне известны размеры кубика, распределение его атомов, скорость, с которой он брошен, и его взаимодействие с окружающей средой, то вычисление точки его остановки теоретически возможно.
Открытия Пуанкаре и тех, кто пришел после него, обнаружили, что различия в нескольких знаках после запятой могут определить, упадет ли кость шестеркой или двойкой. Хотя возможных исходов броска игральной кости существует всего шесть, начальные данные могут варьироваться в потенциально непрерывном диапазоне значений. Тогда, очевидно, должны существовать точки, в которых чрезвычайно малое изменение переключает результат броска с шестерки на двойку. Но какова природа таких переходов?
Компьютерные модели могут производить прекрасные визуальные представления, позволяющие составить понятие о чувствительности различных систем к начальным условиям. Рядом с игральной костью из Лас-Вегаса у меня стоит классическая настольная игрушка, в которую я могу играть часами. Она состоит из металлического маятника, который притягивают три магнита, выкрашенные в белый, черный и серый цвет. Анализ динамики этой игрушки дает картинку, которая отражает конечное положение маятника при движении из всех точек квадратного основания игрушки. Покрасим точку белым, если маятник, запущенный из этой точки, в конце концов оказывается притянут к белому магниту. Точно так же покрасим серым или черным точки, из которых маятник попадает на серый или черный магнит. Получится вот такая картинка: