Размер шрифта
-
+

О том, чего мы не можем знать. Путешествие к рубежам знаний - стр. 34

(r · Y · N). Значит, всего к концу цикла останется в живых (r · Y · N) – (r · Y> 2 · N) = [r · Y(1 – Y)] · N животных, а доля максимальной численности популяции, существующая в текущем цикле, равна r · Y(1 – Y).


По сути дела, эта модель предполагает, что произведение численности выжившей к концу каждого цикла части популяции на постоянный коэффициент r, называемый коэффициентом воспроизводства, дает число животных, существующих в начале следующего цикла. Но необходимых для выживания ресурсов на всех не хватает. Поэтому уравнение вычисляет, какая часть этих животных доживет до конца цикла. Полученное число выживших животных снова умножают на коэффициент r, что дает численность следующего поколения. Интересная особенность этого уравнения состоит в том, что его поведение сильно зависит от выбора значения r, коэффициента воспроизводства. Некоторые значения r дают в высшей степени непредсказуемое поведение. Мы можем точно знать, как будут изменяться значения. Но существует некий предел, за которым они полностью выходят из-под контроля. Знание внезапно оказывается недостижимым, так как добавление всего одного лишнего животного может привести к резкому изменению динамики численности популяции.

Например, Мэй выяснил, что при значениях r от 1 до 3 численность популяции в конце концов стабилизируется. В этом случае, каковы бы ни были начальные условия, численность будет постепенно стремиться к некоторому постоянному значению, зависящему от величины r. Это похоже на игру на бильярде, в центре которого устроена воронка. Куда бы я ни запустил шар, рано или поздно он окажется на дне воронки.

При r, бо́льших 3, также обнаруживается участок предсказуемого поведения, но несколько другого типа. При значениях r от 3 до

(что приблизительно равно 3,44949) численность популяции, по сути дела, скачет взад и вперед между двумя значениями, зависящими от r. Когда r становится больше
, характер динамики популяции снова изменяется. При значениях r от
до 3,54409 (точнее, до корня алгебраического уравнения 12-й степени) существуют уже четыре значения, которых периодически достигает численность популяции. При дальнейшем увеличении r таких значений становится 8, потом 16 и т. д. По мере роста r число разных значений каждый раз удваивается, пока мы не дойдем до порога, за которым динамика превращается из периодической в хаотическую.

Мэй признает, что, когда он начал исследовать это уравнение, он не имел никакого представления о том, что происходит за этой точкой. Перед его кабинетом в Сиднее была доска, на которой он повесил объявление, обещавшее 10 австралийских долларов любому, кто сможет объяснить такое поведение системы. На доске он написал: «По-моему, полная неразбериха».

Страница 34