Размер шрифта
-
+

О дружбе. Эволюция, биология и суперсила главных в жизни связей - стр. 39

В самом начале жизни – как, например, в первые дни Авроры – первой частью социального мозга, которая начинает активироваться, являются области, отвечающие за обработку сенсорной информации. Эти процессы обеспечивают способность ребенка выявлять и распознавать, кто или что будет играть важную роль в его окружении.

Несмотря на значительный прогресс в области визуализации процессов в головном мозге, события, происходящие в нейронных цепях мозга младенцев, до сих пор остаются в нейрофизиологии в определенной степени terra incognita. В своем большинстве методы визуализации мозга, например функциональная МРТ, не учитывают специфику работы с маленькими детьми. Если ребенок не спит, то он активно двигается, что препятствует получению надежных сигналов, и кроме того, малыш не способен выполнять инструкции. Дети малы, и датчики и другое оборудование для них слишком тяжелы; необходимость пребывания в чреве огромных машин их пугает. Кроме того, работающий аппарат МРТ грохочет, как рок-музыканты на концерте.

Теперь, однако, появляется новая технология, позволяющая ненавязчиво заглянуть в мозг маленького ребенка, и первопроходцем в этой области стала «детская лаборатория» в Биркбеке. Прежде чем вернуться к Пираццоли, я поднялась наверх, к Саре Ллойд-Фокс, главному специалисту. Стройная тридцатилетняя блондинка, мать двоих детей, она начала работать в Биркбеке как раз в то время, когда в лаборатории приступили к исследованию возможностей функциональной ближней инфракрасной спектроскопии (ФБИКС) в работе с очень маленькими детьми. «До сих пор этот метод не применяли для работы с младенцами, – говорит Ллойд-Фокс. – Мы увидели в ФБИКС возможность заглянуть в социальный мозг в первый год жизни ребенка»[84]. Диссертация Сары посвящена адаптации метода к работе с детьми. ФБИК-спектроскопия дает возможность наблюдать, что происходит в мозгу маленьких детей (в первые два-три года жизни), когда они бодрствуют и реагируют на то, что видят, слышат и осязают; метод можно использовать независимо от того, смотрит ли ребенок видео, взаимодействует со взрослыми или просто играет пальчиками своих ног.

Как следует из названия, в функциональной ближней инфракрасной спектроскопии используется свет. Если вы в детстве, тайком от взрослых играя по ночам, прикладывали карманный фонарик к подбородку товарища по играм, то наверняка помните призрачное красное свечение отраженного света, яркость которого зависит от состава крови. Чем больше кислорода в крови, тем ярче красное свечение. Количество кислорода в крови, протекающей через определенную область тела, определяется метаболическими потребностями тканей этой области. Когда клетки мозга активны, кровоток в области активации усиливается в ответ на возрастающие потребности нейронов в кислороде и питательных веществах. Оксигенированная кровь имеет ярко-красный цвет. По мере извлечения кислорода из крови в работающих тканях она темнеет, приобретая синеватый или даже фиолетовый оттенок. Увидеть и оценить уровень кислорода в крови, протекающей в тканях мозга, невозможно, поднеся фонарик к черепу, но это можно сделать, если использовать свет ближнего инфракрасного спектра. Инфракрасные лучи невозможно увидеть невооруженным глазом, зато они свободно проникают сквозь кожу, кости черепа и ткань мозга.

Страница 39