Новая Физика Веры - стр. 37
Принцип неопределенности существенен в основном для явлений атомных (и меньших) масштабов и не вносит ограничений в опыты с макроскопическими телами. Волновые свойства у таких тел не проявляются, поэтому принцип Гейзенберга к ним неприменим.
Принцип дополнительности. Сформулированный Н. Бором принцип дополнительности гласит, что получение экспериментальной информации об одних физических величинах, описывающих микрообъект (например, атом, элементарную частицу, молекулу), неизбежно связано с потерей информации о некоторых других величинах, дополнительных к первым.
Получение информации о свойствах объекта осуществляется в результате измерения – взаимодействия прибора с объектом. Взаимодействия прибора с макрообъектом и микрообъектом существенно различны. В первом случае прибор не оказывает или оказывает ничтожно малое воздействие на объект и процесс измерения может быть описан с той или иной степенью точности. Во втором случае в связи с двойственностью микрообъекта процесс измерения непременно связан с существенным влиянием прибора на протекание исследуемого явления.
Принцип дополнительности объясняют влиянием на состояние микросреды измерительного прибора, который является макроскопическим объектом. При точном измерении одной из дополнительных величин, например координаты, с помощью соответствующего прибора другая величина (импульс) в результате взаимодействия частицы с прибором претерпевает полностью неконтролируемое изменение.
Даже простейший эксперимент по измерению с помощью микроскопа координаты частицы (например, электрона) подтверждает полностью неконтролируемое изменение ее импульса, которое объясняется только взаимодействием частицы с прибором. Дело в том, что для определения положения электрона его необходимо «осветить» светом возможно более высокой частоты. В результате соударения фотона с электроном изменяется его импульс.
Прибор искажает то, что исследует. Оказывается, сам акт наблюдения изменяет наблюдаемое. Объективная реальность зависит от прибора, то есть в конечном счете от произвола наблюдателя. «С позиции современной квантовой теории измерений роль прибора заключается в „приготовлении“ некоторого состояния системы» (4). Было установлено, что если прибор предназначен для измерения волны, то электрон в эксперименте ведет себя как волна. Если используется прибор для изучения свойств частицы, то электрон в таком приборе будет уже частицей. Словом, наблюдатель превращается в конечном счете из зрителя в действующее лицо.
Все, к чему мы «прикасаемся», превращается в материю