Ноль: биография опасной идеи - стр. 28
Таланты Архимеда были полезны и войскам Сиракуз. В III веке до н. э. греческая гегемония прекратила существование. Империя Александра Македонского распалась на враждующие государства, и на Западе играла мышцами новая сила: Рим. И Рим имел виды на Сиракузы. Как говорит легенда, Архимед вооружил войско Сиракуз удивительным оружием для защиты города: катапультами, метавшими камни, мощными кранами, которые захватывали римские корабли, поднимали вверх и опрокидывали в воду, и зеркалами, отражавшими солнечный свет и таким образом на расстоянии поджигавшими римские суда. Римские солдаты так боялись этих боевых машин, что, увидев над стеной веревку или кусок дерева, обращались в бегство, думая, что это Архимед нацеливает свое оружие.
Архимед увидел бесконечность благодаря полировке своих зеркал. Греки уже не одно столетие интересовались коническими сечениями. Если рассечь конус плоскостью, можно получить окружности, эллипсы, параболы и гиперболы, в зависимости от того, под каким углом к оси конуса проведена плоскость. Параболическое зеркало обладает одной особенностью: оно собирает в точку солнечные лучи (или лучи от любого удаленного источника света) и фокусирует всю переносимую ими энергию на очень малой площади. Зеркало, которое смогло бы поджечь корабль, должно было быть параболическим. Архимед изучал свойства параболы и именно при этом впервые соприкоснулся с бесконечностью.
Чтобы понять особенности параболы, Архимед должен был научиться измерять ее. Например, никто не знал, как определить площадь части плоскости, ограниченной параболой и пересекающей ее прямой. Площади треугольников и кругов вычислять было легко; слегка менее правильные кривые, вроде параболы, были за пределами возможностей математиков того времени. Однако Архимед нашел способ измерить площадь параболы, используя бесконечное приближение. Первым шагом было вписать в параболу треугольник. В два маленьких незанятых пространства Архимед вписывал по треугольнику. После этого оставалось четыре еще меньших зазора, которые в свою очередь заполнялись вписанными треугольниками, и так далее (рис. 12). Это похоже на Ахиллеса и черепаху: бесконечная серия шагов, каждый из которых делается все меньше и меньше. Площади маленьких треугольников быстро приближались к нолю.
Рис. 12. Парабола Архимеда
После долгих и сложных вычислений Архимед сложил площади бесконечного числа треугольников и так нашел площадь параболы. Однако любой его современник отверг бы такое рассуждение: Архимед использовал такой инструмент, как бесконечность, который был категорически запрещен его коллегами-математиками. Чтобы их удовлетворить, Архимед предложил также доказательство, основанное на принятых тогда понятиях, использовавшее так называемую аксиому Архимеда, хотя сам Архимед приписывал заслугу ее открытия более ранним математикам. Как вы, возможно, помните, эта аксиома гласит, что любое число, снова и снова прибавляемое к самому себе, превзойдет любое другое число. Ноль, ясное дело, сюда не был включен.