Ноль: биография опасной идеи - стр. 2
Начала математической мысли могут быть найдены в желании сосчитать овец, в потребности вести учет собственности и течения времени. Ни одна из этих задач не требовала использования ноля; цивилизация прекрасно функционировала за столетия до его открытия. Понятие ноля было настолько непривлекательно для некоторых культур, что они предпочитали жить без него.
Жизнь без ноля
Проблема с нолем заключается в том, что мы не нуждаемся в нем в повседневной жизни. Никто не отправляется на рынок, чтобы купить ноль рыб. В определенной мере это наиболее цивилизованная из основ, и ее использование было навязано нам только потребностями разработанных моделей мышления.
Альфред Норт Уайтхед
Современному человеку трудно представить себе жизнь без ноля, как трудно представить жизнь без чисел 7 или 31. Тем не менее было время, когда ноля не существовало – как не существовало и этих чисел. Дело было еще в доисторические времена, так что палеонтологам пришлось собирать по кусочкам историю рождения математики, изучая осколки камней и кости. По этим фрагментам они узнали, что математики каменного века были более неприхотливы, чем современные. Вместо грифельной доски они использовали… волков.
Ключ к математике каменного века был найден при раскопках в Чехословакии в конце 1930-х годов археологом Карлом Абсаломом. Он нашел волчью кость с серией насечек; кости было тридцать тысяч лет. Никто не знает, использовал ли ее первобытный человек, чтобы сосчитать, сколько он убил оленей, сколько рисунков сделал или сколько дней не мылся, однако совершенно ясно, что древние люди что-то подсчитывали.
Волчья кость была в каменном веке эквивалентом суперкомпьютера. Предки нашего первобытного математика не могли сосчитать даже до двух, а уж ноль им точно не требовался. На самых начальных этапах люди могли различать только «один» и «много». Первобытный человек владел одним копьем или несколькими; он съедал одну убитую ящерицу или многих. Не было никакой возможности показать другие количества между «один» и «много». С течением времени примитивные языки развились достаточно, чтобы различать «один», «два» и «много», а потом и «один», «два», «три» и «много», но названий для бо́льших чисел еще не было. Некоторые языки все еще имеют такое ограничение. Индейцы сирионо в Боливии и бразильские индейцы яномамо не имеют названий для чисел больше трех, вместо этого они говорят «несколько» или «много».
Сама природа чисел такова, что их можно складывать друг с другом, получая новые, так что система не остановилась на трех. Через некоторое время умные члены племени начали нанизывать числа-слова в ряд, чтобы получить бо́льшие числа. Современные языки народностей бакайри и бороро в Бразилии демонстрируют этот процесс в действии. Их система чисел выглядит так: «один», «два», «два и один», «два и два», «два и два и один» и так далее. Эти люди считают двойками. Математики называют такую систему бинарной.