Размер шрифта
-
+

Ноль: биография опасной идеи - стр. 10

).


Рис. 3: Цифры майя


Как и египтяне, майя создали превосходный солнечный календарь. Поскольку их система счета основывалась на числе 20, майя, естественно, разделили год на 18 месяцев, по 20 дней каждый, что в сумме давало 360 дней. Особый период из пяти дней в конце года, называвшийся «уайеб», доводил общее количество до 365. В отличие от египтян, впрочем, майя включали в свою систему счета ноль, так что делали очевидную вещь: начинали отсчет дней с ноля. Первый день месяца – Зип, например, обычно именовался «установление» или «посадка» Зип. Следующим днем было 1 Зип, за ним следовало 2 Зип и так далее, пока не доходило до 19 Зип.

Потом наступала «посадка» Зоц – 0 Зоц; дальше следовало 1 Зоц и так далее. Каждый месяц имел 20 дней, имевших номера от 0 до 19, а не от 1 до 20, как мы делаем сегодня. (Майяский календарь был удивительно сложен. Помимо солнечного календаря, существовал ритуальный, состоявший из двадцати недель, по тринадцать дней каждая. В соединении с солнечным годом он давал календарный круг, в котором каждый день 52-летнего цикла имел собственное название.)

Майяская система была более осмысленной, чем западная. Поскольку западный календарь был создан во времена, когда ноля не существовало, мы не имеем ни нулевого дня, ни нулевого года. Это, казалось бы, незначительное упущение привело к огромным трудностям: вызвало разногласия по поводу начала тысячелетия. Майя никогда не стали бы спорить о том, является ли первым годом XXI века 2000 или 2001 год. Однако наш календарь создавали не майя, это были египтяне, а позже римляне. По этой причине мы оказались с неудобным, лишенным ноля календарем.

Отсутствие ноля у египтян повредило и календарю, и будущему западной математики. На самом деле египетская цивилизация повредила математике не в единственном отношении. Будущие трудности оказались связаны не только с отсутствием ноля. У египтян был чрезвычайно громоздкий способ обращаться с дробями. Они не думали о >3/>4 как об отношении трех к четырем, как мы делаем сегодня; они рассматривали >3/>4 как сумму >1/>2 и >1/>4. За единственным исключением – >2/>3 – все египетские дроби записывались как суммы чисел, имеющих вид >1/>n (где n – натуральное число), – так называемые дробные единицы. Длинные цепочки этих дробных единиц делали чрезвычайно трудными манипуляции с дробями в египетской (и греческой) системе счисления.

Наличие ноля делает эту громоздкую систему устаревшей. В вавилонской системе, имевшей ноль, записывать дроби было легко. Как мы можем заменить >1/>2 выражением 0,5, а

Страница 10